scholarly journals Ground surface temperatures indicate the presence of permafrost in North Africa (Djebel Toubkal, High Atlas, Morocco)

2016 ◽  
Author(s):  
Gonçalo Vieira ◽  
Carla Mora ◽  
Ali Faleh

Abstract. Relict and present-day periglacial activity have been reported in the literature for the upper reaches of the High Atlas mountains, the highest range in North Africa (Djebel Toubkal – 4,167 m a.s.l.). Lobate features in the Irhzer Ikbi South at 3,800 m a.s.l. have been previously interpreted as an active rock glacier, but no measurements of ground or air temperatures are known to exist for the area. In order to assess on the possible presence of permafrost, analyse data from June 2015 to June 2016 from two air temperature sites at 2,370 and 3,200 m a.s.l., and from four ground surface temperature (GST) sites at 3,200, 3,815, 3,980 and 4,160 m a.s.l. allowing to characterize conditions along an altitudinal gradient along the Oued Ihghyghaye valley to the summit of the Djebel Toubkal. GST were collected at 1-hour intervals and the presence of snow cover at the monitoring sites was validated using Landsat-8 and Sentinel-2 imagery. Two field visits allowed for logger installation and collection and for assessing the geomorphological features in the area. The results show that snow plays a major role on the thermal regime of the shallow ground, inducing important spatial variability. The lowest site at 3,210 m showed a regime characterized by frequent freeze-thaw cycles during the cold season but with a small number of days of snow. When snow sets, the ground remains isothermal at 0 °C and the thermal regime indicates the absence of permafrost. The highest sites at 3,980 and 4,160 m a.s.l. showed very frequent freeze-thaw cycles and a small influence of the snow cover on GST, reflecting the lack of snow accumulation due to the their wind-exposed settings in a ridge and in the summit plateau. The site located at 3,815 m in the Irhzer Ikbi South valley showed a stable thermal regime from December to March with GST varying from −4.5 to −6 °C, under a continuous snow cover. The site's location in a concave setting favours snow accumulation and lower incoming solar radiation due to the effect of a southwards ridge, favouring the maintenance of a thick snow pack. The stable and low GST are interpreted as a strong indicator of the probable presence of permafrost at this site, an interpretation which is supported by the presence of lobate and arcuate forms in the talus deposits. These results are still a first approach and observations through geophysics and boreholes are foreseen. This is the first time that probable permafrost is reported from temperature observations in the mountains of North Africa.

2017 ◽  
Vol 11 (4) ◽  
pp. 1691-1705 ◽  
Author(s):  
Gonçalo Vieira ◽  
Carla Mora ◽  
Ali Faleh

Abstract. Relict and present-day periglacial features have been reported in the literature for the upper reaches of the High Atlas mountains, which is the highest range in North Africa (Djebel Toubkal – 4167 m a.s.l.). A lobate feature in the Irhzer Ikhibi south at 3800 m a.s.l. has been previously interpreted as an active rock glacier, but no measurements of ground or air temperatures are known to exist for the area. In order to assess the possible presence of permafrost, we analyse data from June 2015 to June 2016 from two air temperature measurement sites at 2370 and 3210 m a.s.l. and from four ground surface temperature (GST) sites at 3220, 3815, 3980 and 4160 m a.s.l. to characterize conditions along an altitudinal gradient along the Oued Ihghyghaye valley to the summit of the Djebel Toubkal. GSTs were collected at 1 h intervals, and the presence of snow cover at the monitoring sites was validated using Landsat 8 and Sentinel-2 imagery. Two field visits allowed for logger installation and collection and for assessing the geomorphological features in the area. The results show that snow plays a major role on the thermal regime of the shallow ground, inducing important spatial variability. The lowest site at 3220 m had a thermal regime characterized by frequent freeze–thaw cycles during the cold season but with few days of snow. When snow settled, the ground surface remained isothermal at 0 °C , indicating the absence of permafrost. The highest sites at 3980 and 4160 m a.s.l. showed very frequent freeze–thaw cycles and a small influence of the snow cover on GST, reflecting the lack of snow accumulation due to the wind-exposed settings on a ridge and on the summit plateau. The site located at 3815 m in the Irhzer Ikhibi south valley had a cold, stable thermal regime with GST varying from −4.5 to −6 °C from December to March, under a continuous snow cover. The site's location in a concave setting favours wind-driven snow accumulation and lower incoming solar radiation due to the shading effect of a ridge, inducing the conservation of a thick snow pack. The stable and low GSTs are interpreted as a strong indicator of the probable presence of permafrost at this site, which is an interpretation supported by the presence of lobate and arcuate features in the talus deposits. We present first results and further observations using geophysics, and borehole measurements are foreseen. This is the first time that probable permafrost has been reported from temperature observations in the mountains of North Africa.


2021 ◽  
Author(s):  
Andreas Kellerer-Pirklbauer ◽  
Gerhard Karl Lieb

<p>Ground temperatures in alpine environments are severely influenced by slope orientation (aspect), slope inclination, local topoclimatic conditions, and thermal properties of the rock material. Small differences in one of these factors may substantially impact the ground thermal regime, weathering by freeze-thaw action or the occurrence of permafrost. To improve the understanding of differences, variations, and ranges of ground temperatures at single mountain summits, we studied the ground thermal conditions at a triangle-shaped (plan view), moderately steep pyramidal peak over a two-year period (2018-2020).</p><p>We installed 18 monitoring sites with 23 sensors near the summit of Innerer Knorrkogel (2882m asl), in summer 2018 with one- and multi-channel datalogger (Geoprecision). All three mountain ridges (east-, northwest-, and southwest-facing) and flanks (northeast-, west-, and south-facing) were instrumented with one-channel dataloggers at two different elevations (2840 and 2860m asl) at each ridge/flank to monitor ground surface temperatures. Three bedrock temperature monitoring sites with shallow boreholes (40cm) equipped with three sensors per site at each of the three mountain flanks (2870m asl) were established. Additionally, two ground surface temperature monitoring sites were installed at the summit.</p><p>Results show remarkable differences in mean annual ground temperatures (MAGT) between the 23 different sensors and the two years despite the small spatial extent (0.023 km²) and elevation differences (46m). Intersite variability at the entire mountain pyramid was 3.74°C in 2018/19 (mean MAGT: -0.40°C; minimum: -1.78°C; maximum: 1.96°C;) and 3.27°C in 2019/20 (mean MAGT: 0.08°C; minimum: -1.54°C; maximum: 1,73°C;). Minimum was in both years at the northeast-facing flank, maximum at the south-facing flank. In all but three sites, the second monitoring year was warmer than the first one (mean +0.48°C) related to atmospheric differences and site-specific snow conditions. The comparison of the MAGT-values of the two years (MAGT-2018/19 minus MAGT-2019/20) revealed large thermal inhomogeneities in the mountain summit ranging from +0.65° (2018/19 warmer than 2019/20) to -1.76°C (2018/19 colder than 2019/20) at identical sensors. Temperature ranges at the three different aspects but at equal elevations were 1.7-2.2°C at ridges and 1.8-3.7°C at flanks for single years. The higher temperature range for flank-sites is related to seasonal snow cover effects combined with higher radiation at sun-exposed sites. Although the ground temperature was substantially higher in the second year, the snow cover difference between the two years was variable. Some sites experienced longer snow cover periods in the second year 2019/20 (up to +85 days) whereas at other sites the opposite was observed (up to -85 days). Other frost weathering-related indicators (diurnal freeze-thaw cycles, frost-cracking window) show also large intersite and interannual differences.</p><p>Our study shows that the thermal regime at a triangle-shaped moderately steep pyramidal peak is very heterogeneous between different aspects and landforms (ridge/flank/summit) and between two monitoring years confirming earlier monitoring and modelling results. Due to high intersite and interannual variabilities, temperature-related processes such as frost-weathering can vary largely between neighbouring sites. Our study highlights the need for systematic and long-term ground temperature monitoring in alpine terrain to improve the understanding of small- to medium-scale temperature variabilities.</p>


Finisterra ◽  
2012 ◽  
Vol 44 (87) ◽  
Author(s):  
Javier Santos-González ◽  
Rosa González-Gutiérrez ◽  
Amélia Gómes-Villar ◽  
José Redondo-Vega

Ground temperature data obtained from 2002 to 2007 in sites near relict rock glaciers in the cantabrian mountains, at altitudes between 1500 and 2300 meters is analysed. Snow cover lasted between 3 and 9 months and had a strong influence on the thermal regime. When snow was present, the soil was normally frozen in the first 5 to 10 cm, but daily freeze-thaw cycles were rare. In well developed soils located at sunny faces frost penetration rarely reached more than 10 cm. on the contrary in shady and windy faces with scarce snow cover, frost penetration reached, at least, 40 cm. In persistent snow patches the temperature was stable at 0 ºc, even in relict rock glaciers, where subnival winter air fluxes appear to have been very rare.


2018 ◽  
Author(s):  
Isabelle Gouttevin ◽  
Moritz Langer ◽  
Henning Löwe ◽  
Julia Boike ◽  
Martin Proksch ◽  
...  

Abstract. The shortage of information on snow properties in high latitudes places a major limitation on permafrost and more generally climate modelling. A dedicated field program was therefore carried out to investigate snow properties and their spatial variability at a polygonal tundra permafrost site. Notably, snow samples were analysed for surface-normal thermal conductivity (Keff-z) based on X-ray microtomography. Also, the detailed snow model SNOWPACK was adapted to these Arctic conditions to enable relevant simulations of the ground thermal regime. Finally, the sensitivity of soil temperatures to snow spatial variability was analysed. Our depth hoar samples were found more conductive (Keff-z = 0.22 ± 0.05 W m−1 K−1) than in most previously published studies, which could be explained by their high density and anisotropy. Spatial variations in the thermal properties of the snowpack were well explained the micro-topography and ground surface conditions of the polygonal tundra, which control depth hoar growth and snow accumulation. Our adaptations to SNOWPACK, phenomenologically taking into account the effects of wind compaction, basal vegetation and water vapour flux, yielded realistic density and Keff-z profiles that greatly improved simulations of the ground thermal regime. The potential of an anisotropy and density-based formulation of Keff-z in snow models was shown. Soil temperatures were found to be particularly sensitive to snow conditions during the dark part of winter, highlighting the need for improved snow characterization and modelling over this period.


2020 ◽  
Vol 12 (21) ◽  
pp. 3576
Author(s):  
Mingtang Chai ◽  
Guoyu Li ◽  
Wei Ma ◽  
Yapeng Cao ◽  
Gang Wu ◽  
...  

The China–Russia crude oil pipeline (CRCOP) traverses rivers, forests, and mountains over permafrost regions in northeastern China. Water accumulates beside the pipe embankment, which disturbs the hydrothermal balance of permafrost underlying the pipeline. Ground surface flows along the pipeline erode the pipe embankment, which threatens the CRCOP’s operational safety. Additionally, frost heave and thaw settlement can induce differential deformation of the pipes. Therefore, it is necessary to acquire the spatial distribution of water features along the CRCOP, and analyze the various hazard probabilities and their controlling factors. In this paper, information regarding the permafrost type, buried depth of the pipe, soil type, landforms, and vegetation were collected along the CRCOP every 2 km. Ponding and erosive damage caused by surface flows were measured via field investigations and remote sensing images. Two hundred and sixty-four pond sites were extracted from Landsat 8 images, in which the areas of 46.8% of the ponds were larger than 500 m2. Several influential factors related to freeze–thaw hazards and erosive damage were selected and put into a logistic regression model to determine their corresponding risk probabilities. The results reflected the distributions, and forecasted the occurrences, of freeze–thaw hazards and erosive damage. The sections of pipe with the highest risks of freeze–thaw and erosive damage accounted for 2.4% and 6.7%, respectively, of the pipeline. Permafrost type and the position where runoff encounters the pipeline were the dominant influences on the freeze–thaw hazards, while the runoff–pipe position, buried depth of the pipe, and landform types played a dominant role in erosive damage along the CRCOP. Combined with the geographic information system (GIS), field surveys, image interpretation and model calculations are effective methods for assessing the various hazards along the CRCOP in permafrost regions.


2013 ◽  
Vol 37 (4) ◽  
pp. 484-515 ◽  
Author(s):  
Kristina A. Luus ◽  
John C. Lin ◽  
Richard E.J. Kelly ◽  
Claude R. Duguay

In the Arctic and sub-Arctic, up to half of annual net ecosystem exchange (NEE) occurs during the snow season. Subnivean soil respiration can persist at a greater rate when the overlying snowpack has a lower thermal conductivity, and the rate of photosynthetic uptake at the start and end of the snow season can be diminished by fractional snow cover. Although recent studies have indicated that uncertainty in model estimates of NEE can be reduced by representing the influence of a modeled snowpack on soil respiration, models of NEE have not represented the influence of snowpack dynamics on processes such as subnivean photosynthesis or CO2 diffusivity, and have not used remote sensing observations to characterize snow season processes. We therefore: (1) review snow season processes and their effects on NEE; (2) assess the suitability of cryospheric remote sensing approaches for models of NEE; and (3) suggest strategies for representing snow season processes in models of NEE. Strategies include: using observations of fractional snow cover in spring and fall to restrict estimates of photosynthetic uptake; combining observations of snow accumulation and soil freeze/thaw with observations of air temperature to generate more realistic estimates of soil temperature and soil respiration; and using observations of depth to estimate the influence of snow accumulation and tree wells on soil respiration. Including remote sensing observations of snow properties in models of NEE could reduce uncertainty in snow season estimates of NEE, resulting in a better understanding of the northern carbon cycle and how it is responding to climate-driven changes in the interconnected biospheric, atmospheric and cryospheric systems.


2008 ◽  
Vol 54 (187) ◽  
pp. 696-704 ◽  
Author(s):  
Martina Luetschg ◽  
Michael Lehning ◽  
Wilfried Haeberli

AbstractAlpine permafrost distribution is controlled by a great number of climatic, topographic and soil-specific factors, including snow cover, which plays a major role. In this study, a one-dimensional finite-element numerical model was developed to analyze the influence of individual snow-specific and climatic factors on the ground thermal regime. The results indicate that the most important factor is snow depth. Snow depths below the threshold value of 0.6 m lack sufficient insulation to prevent low atmospheric temperatures from cooling the soil. The date of first winter snow insulation and variations in mean annual air temperature (MAAT) are also shown to be important. Delays in early-winter snow insulation and in summer snow disappearance are shown to be of approximately equal significance to the ground thermal conditions. Numerical modelling also indicates that the duration of effective thermal resistance of snow cover governs the slope of the linear dependency between MAAT and mean annual ground surface temperatures (MAGST). Consequently, the most direct effect of a long-term rise in air temperatures on ground temperatures is predicted under a thin snow cover with early snowmelt in spring and/or where a large change in the date of total snowmelt occurs, in response to atmospheric warming.


1975 ◽  
Vol 12 (8) ◽  
pp. 1421-1438 ◽  
Author(s):  
M. W. Smith

Variations in ground thermal regime were studied over a small area in the east-central part of the Mackenzie Delta, Northwest Territories, about 50 km northwest of Inuvik. Vegetation shows a successional sequence related to river migration and there is a complex interaction between vegetation, topography, and microclimate.Measurements from five sites show that significant differences in thermal regime exist beneath various types of vegetation. There is a general decrease in mean annual ground temperatures with increasing vegetation. The mean annual air temperature in this area is −9 °to −10 °C, but microclimatic factors lead to mean surface temperatures of between 0 °C and −4.2 °C.In summer, variations in net radiation account for the differences in ground thermal regime at the three sites on the slip-off slope. At the other two sites a surface layer of moss and peat leads to small values in ground heat flux and is instrumental in maintaining lower temperatures there. Removal of 10 cm of organic material at one site led to an increase of 3 °C in the mean daily 10 cm temperature.In winter, on the slip-off slope, variations in snow accumulation lead to ground temperature variations greater than those due to vegetation per se. Spatial variation of about 20 °C in ground surface temperature was measured in March 1970; during July and August 1970 the maximum spatial variation observed was only 10 °C. Differences of up to 6 °C in 1 m temperatures were measured over a distance of only 12 m. Snow cover is a permafrost-controlling factor in this area; where accumulations are greatest a talik has formed due to the insulating effect of deep snow.


2020 ◽  
Vol 12 (18) ◽  
pp. 3058
Author(s):  
Mohamed Wassim Baba ◽  
Simon Gascoin ◽  
Olivier Hagolle ◽  
Elsa Bourgeois ◽  
Camille Desjardins ◽  
...  

The VENμS mission launched in 2017 provides multispectral optical images of the land surface with a 2-day revisit time at 5 m resolution for over 100 selected sites. A few sites are subject to seasonal snow accumulation, which gives the opportunity to monitor the variations of the snow cover area at unprecedented spatial and temporal resolution. However, the 12 spectral bands of VENμS only cover the visible and near-infrared region of the spectra while existing snow detection algorithms typically make use of a shortwave infrared band to determine the presence of snow. Here, we evaluate two alternative snow detection algorithms. The first one is based on a normalized difference index between the near-infrared and the visible bands, and the second one is based on a machine learning approach using the Theia Sentinel-2 snow products as training data. Both approaches are tested using Sentinel-2 data (as surrogate of VENμS data) as well as actual VENμS in the Pyrenees and the High Atlas. The results confirm the possibility of retrieving snow cover without SWIR with a slight loss in performance. As expected, the results confirm that the machine learning method provides better results than the index-based approach (e.g., an RMSE equal to the learning method 1.35% and for the index-based method 10.80% in the High Atlas.). The improvement is more evident in the Pyrenees probably due to the presence of vegetation which complicates the spectral signature of the snow cover area in VENμS images.


2018 ◽  
Vol 12 (11) ◽  
pp. 3693-3717 ◽  
Author(s):  
Isabelle Gouttevin ◽  
Moritz Langer ◽  
Henning Löwe ◽  
Julia Boike ◽  
Martin Proksch ◽  
...  

Abstract. The shortage of information on snow properties in high latitudes places a major limitation on permafrost and more generally climate modelling. A dedicated field program was therefore carried out to investigate snow properties and their spatial variability at a polygonal tundra permafrost site. Notably, snow samples were analysed for surface-normal thermal conductivity (Keff−z) based on X-ray microtomography. Also, the detailed snow model SNOWPACK was adapted to these Arctic conditions to enable relevant simulations of the ground thermal regime. Finally, the sensitivity of soil temperatures to snow spatial variability was analysed. Within a typical tundra snowpack composed of depth hoar overlain by wind slabs, depth hoar samples were found more conductive (Keff-z=0.22±0.05 W m−1 K−1) than in most previously published studies, which could be explained by their high density and microstructural anisotropy. Spatial variations in the thermal properties of the snowpack were well explained by the microtopography and ground surface conditions of the polygonal tundra, which control depth hoar growth and snow accumulation. Our adaptations to SNOWPACK, phenomenologically taking into account the effects of wind compaction, basal vegetation, and water vapour flux, yielded realistic density and Keff−z profiles that greatly improved simulations of the ground thermal regime. Also, a density- and anisotropy-based parameterization for Keff−z lead to further slight improvements. Soil temperatures were found to be particularly sensitive to snow conditions during the early winter and polar night, highlighting the need for improved snow characterization and modelling over this period.


Sign in / Sign up

Export Citation Format

Share Document