Simulation modelling of dairy cattle performance based on knowledge of genotype, environment and genotype by environment interactions: current status

2005 ◽  
Vol 86 (2) ◽  
pp. 121-143 ◽  
Author(s):  
Jeremy Bryant ◽  
Nicolás López-Villalobos ◽  
Colin Holmes ◽  
Jennie Pryce
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Shi ◽  
Luiz Fernando Brito ◽  
Aoxing Liu ◽  
Hanpeng Luo ◽  
Ziwei Chen ◽  
...  

Abstract Background The effect of heat stress on livestock production is a worldwide issue. Animal performance is influenced by exposure to harsh environmental conditions potentially causing genotype-by-environment interactions (G × E), especially in highproducing animals. In this context, the main objectives of this study were to (1) detect the time periods in which heifer fertility traits are more sensitive to the exposure to high environmental temperature and/or humidity, (2) investigate G × E due to heat stress in heifer fertility traits, and, (3) identify genomic regions associated with heifer fertility and heat tolerance in Holstein cattle. Results Phenotypic records for three heifer fertility traits (i.e., age at first calving, interval from first to last service, and conception rate at the first service) were collected, from 2005 to 2018, for 56,998 Holstein heifers raised in 15 herds in the Beijing area (China). By integrating environmental data, including hourly air temperature and relative humidity, the critical periods in which the heifers are more sensitive to heat stress were located in more than 30 days before the first service for age at first calving and interval from first to last service, or 10 days before and less than 60 days after the first service for conception rate. Using reaction norm models, significant G × E was detected for all three traits regarding both environmental gradients, proportion of days exceeding heat threshold, and minimum temperature-humidity index. Through single-step genome-wide association studies, PLAG1, AMHR2, SP1, KRT8, KRT18, MLH1, and EOMES were suggested as candidate genes for heifer fertility. The genes HCRTR1, AGRP, PC, and GUCY1B1 are strong candidates for association with heat tolerance. Conclusions The critical periods in which the reproductive performance of heifers is more sensitive to heat stress are trait-dependent. Thus, detailed analysis should be conducted to determine this particular period for other fertility traits. The considerable magnitude of G × E and sire re-ranking indicates the necessity to consider G × E in dairy cattle breeding schemes. This will enable selection of more heat-tolerant animals with high reproductive efficiency under harsh climatic conditions. Lastly, the candidate genes identified to be linked with response to heat stress provide a better understanding of the underlying biological mechanisms of heat tolerance in dairy cattle.


Euphytica ◽  
2017 ◽  
Vol 213 (5) ◽  
Author(s):  
Megan M. Mathey ◽  
Sonali Mookerjee ◽  
Lise L. Mahoney ◽  
Kazim Gündüz ◽  
Umesh Rosyara ◽  
...  

2020 ◽  
Author(s):  
Edwin Lauer ◽  
Andrew Sims ◽  
Steven McKeand ◽  
Fikret Isik

Abstract Genetic parameters were estimated using a five-series multienvironment trial of Pinus taeda L. in the southern USA. There were 324 half-sib families planted in five test series across 37 locations. A set of six variance/covariance matrices for the genotype-by-environment (G × E) effect for tree height and diameter were compared on the basis of model fit. In single-series analysis, extended factor analytical models provided generally superior model fit to simpler models for both traits; however, in the combined-series analysis, diameter was optimally modeled using simpler variance/covariance structures. A three-way compound term for modeling G × E interactions among and within series yielded substantial improvements in terms of model fit and standard errors of predictions. Heritability of family means ranged between 0.63 and 0.90 for both height and diameter. Average additive genetic correlations among sites were 0.70 and 0.61 for height and diameter, respectively, suggesting the presence of some G × E interaction. Pairs of sites with the lowest additive genetic correlations were located at opposite ends of the latitude range. Latent factor regression revealed a small number of parents with large factor scores that changed ranks significantly between southern and northern environments. Study Implications Multienvironmental progeny tests of loblolly pine (Pinus taeda L.) were established over 10 years in the southern United States to understand the genetic variation for the traits of economic importance. There was substantial genetic variation between open-pollinated families, suggesting that family selection would be efficient in the breeding program. Genotype-by-environment interactions were negligible among sites in the deployment region but became larger between sites at the extremes of the distribution. The data from these trials are invaluable in informing the breeding program about the genetic merit of selection candidates and their potential interaction with the environment. These results can be used to guide deployment decisions in the southern USA, helping landowners match germplasm with geography to achieve optimal financial returns and conservation outcomes.


Sign in / Sign up

Export Citation Format

Share Document