A modified soil water deficit index (MSWDI) for agricultural drought monitoring: Case study of Songnen Plain, China

2017 ◽  
Vol 194 ◽  
pp. 125-138 ◽  
Author(s):  
Huicai Yang ◽  
Huixiao Wang ◽  
Guobin Fu ◽  
Haiming Yan ◽  
Panpan Zhao ◽  
...  
2018 ◽  
Vol 10 (8) ◽  
pp. 1302 ◽  
Author(s):  
Jueying Bai ◽  
Qian Cui ◽  
Deqing Chen ◽  
Haiwei Yu ◽  
Xudong Mao ◽  
...  

China is frequently subjected to local and regional drought disasters, and thus, drought monitoring is vital. Drought assessments based on available surface soil moisture (SM) can account for soil water deficit directly. Microwave remote sensing techniques enable the estimation of global SM with a high temporal resolution. At present, the evaluation of Soil Moisture Active Passive (SMAP) SM products is inadequate, and L-band microwave data have not been applied to agricultural drought monitoring throughout China. In this study, first, we provide a pivotal evaluation of the SMAP L3 radiometer-derived SM product using in situ observation data throughout China, to assist in subsequent drought assessment, and then the SMAP-Derived Soil Water Deficit Index (SWDI-SMAP) is compared with the atmospheric water deficit (AWD) and vegetation health index (VHI). It is found that the SMAP can obtain SM with relatively high accuracy and the SWDI-SMAP has a good overall performance on drought monitoring. Relatively good performance of SWDI-SMAP is shown, except in some mountain regions; the SWDI-SMAP generally performs better in the north than in the south for less dry bias, although better performance of SMAP SM based on the R is shown in the south than in the north; differences between the SWDI-SMAP and VHI are mainly shown in areas without vegetation or those containing drought-resistant plants. In summary, the SWDI-SMAP shows great application potential in drought monitoring.


2019 ◽  
Vol 11 (3) ◽  
pp. 362 ◽  
Author(s):  
Qian Zhu ◽  
Yulin Luo ◽  
Yue-Ping Xu ◽  
Ye Tian ◽  
Tiantian Yang

Agricultural drought can have long-lasting and harmful impacts on both the ecosystem and economy. Therefore, it is important to monitor and predict agricultural drought accurately. Soil moisture is the key variable to define the agricultural drought index. However, in situ soil moisture observations are inaccessible in many areas of the world. Remote sensing techniques enrich the surface soil moisture observations at different tempo-spatial resolutions. In this study, the Level 2 L-band radiometer soil moisture dataset was used to estimate the Soil Water Deficit Index (SWDI). The Soil Moisture Active Passive (SMAP) dataset was evaluated with the soil moisture dataset obtained from the China Land Soil Moisture Data Assimilation System (CLSMDAS). The SMAP-derived SWDI (SMAP_SWDI) was compared with the atmospheric water deficit (AWD) calculated with precipitation and evapotranspiration from meteorological stations. Drought monitoring and comparison were accomplished at a weekly scale for the growing season (April to November) from 2015 to 2017. The results were as follows: (1) in terms of Pearson correlation coefficients (R-value) between SMAP and CLSMDAS, around 70% performed well and only 10% performed poorly at the grid scale, and the R-value was 0.62 for the whole basin; (2) severe droughts mainly occurred from mid-June to the end of September from 2015 to 2017; (3) severe droughts were detected in the southern and northeastern Xiang River Basin in mid-May of 2015, and in the northern basin in early August of 2016 and end of November 2017; (4) the values of percentage of drought weeks gradually decreased from 2015 to 2017, and increased from the northeast to the southwest of the basin in 2015 and 2016; and (5) the average value of R and probability of detection between SMAP_SWDI and AWD were 0.6 and 0.79, respectively. These results show SMAP has acceptable accuracy and good performance for drought monitoring in the Xiang River Basin.


2016 ◽  
Vol 177 ◽  
pp. 277-286 ◽  
Author(s):  
J. Martínez-Fernández ◽  
A. González-Zamora ◽  
N. Sánchez ◽  
A. Gumuzzio ◽  
C.M. Herrero-Jiménez

2008 ◽  
Vol 127 (5) ◽  
pp. 369-378 ◽  
Author(s):  
Virginia Hernández-Santana ◽  
José Martínez-Fernández ◽  
Carlos Morán ◽  
Ana Cano

1998 ◽  
Vol 26 (3) ◽  
pp. 289-296
Author(s):  
M. Jurišić ◽  
Ž. Vidaček ◽  
Ž. Bukvić ◽  
D. Brkić ◽  
R. Emert

Sign in / Sign up

Export Citation Format

Share Document