modified soil
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 43)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 88 (1) ◽  
pp. 29-38
Author(s):  
Clement E. Akumu ◽  
Eze O. Amadi

The mapping of southern yellow pines (loblolly, shortleaf, and Virginia pines) is important to supporting forest inventory and the management of forest resources. The overall aim of this study was to examine the integration of Landsat Operational Land Imager (OLI ) optical data with Sentinel-1 microwave C-band satellite data and vegetation indices in mapping the canopy cover of southern yellow pines. Specifically, this study assessed the overall mapping accuracies of the canopy cover classification of southern yellow pines derived using four data-integration scenarios: Landsat OLI alone; Landsat OLI and Sentinel-1; Landsat OLI with vegetation indices derived from satellite data—normalized difference vegetation index, soil-adjusted vegetation index, modified soil-adjusted vegetation index, transformed soil-adjusted vegetation index, and infrared percentage vegetation index; and 4) Landsat OLI with Sentinel-1 and vegetation indices. The results showed that the integration of Landsat OLI reflectance bands with Sentinel-1 backscattering coefficients and vegetation indices yielded the best overall classification accuracy, about 77%, and standalone Landsat OLI the weakest accuracy, approximately 67%. The findings in this study demonstrate that the addition of backscattering coefficients from Sentinel-1 and vegetation indices positively contributed to the mapping of southern yellow pines.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1302
Author(s):  
Yunlong Li ◽  
Yimin Wang ◽  
Chao Shen ◽  
Lu Xu ◽  
Siqiang Yi ◽  
...  

The study investigated the influence of sewage sludge application at rates of 0 (CK), 30 (ST), 75 (MT), and 150 (HT) t ha−1 to mudflats on bacterial community diversity and predicted functions using amplicon-based sequencing. Soils under sewage sludge treatments, especially the HT treatment, exhibited lower pH, salinity and higher nutrient contents (C, N, and P). Moreover, restructured bacterial communities with significantly higher diversities and distinct core and unique microbiomes were observed in all sewage sludge-amended soils as compared to the control. Specifically, core bacterial families, such as Hyphomicrobiaceae, Cytophagaceae, Pirellulaceae Microbacteriaceae, and Phyllobacteriaceae, were significantly enriched in sewage sludge-amended soils. In addition, sewage sludge amendment significantly improved predicted functional diversities of core microbiomes, with significantly higher accumulative relative abundances of functions related to carbon and nitrogen cycling processes compared to the unamended treatment. Correlation analyses showed that modified soil physicochemical properties were conducive for the improvement of diversities of bacterial communities and predicted functionalities. These outcomes demonstrated that sewage sludge amendment not only alleviated saline–sodic and nutrient deficiency conditions, but also restructured bacterial communities with higher diversities and versatile functions, which may be particularly important for the fertility formation and development of mudflat soils.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3164
Author(s):  
Tong Xu ◽  
Jiacheng Yu ◽  
Dongjian Cai ◽  
Zhaoyang You ◽  
Kinjal J. Shah

In this work, a silane modifier with benzyl substitutes (OFS-B) and linear substitutes (OFS-L) was used to modify bentonite clay and soil, and the results were characterized by Fourier transform-infrared absorption spectroscopy (FT-IR) and powder-X-ray diffraction (XRD) analysis. A contact angle analysis was performed to determine the wettability of modified clay and soil. The findings revealed that silane-modified OFS-L clay and soil produced wettable surfaces, while OFS-B exhibited hydrophobic properties. These clays and soils were used in a bioretention system for Cd (II) removal. In the study, seven different types of bioretention systems, including natural, OFS-L, and OFS-B modified clay and soil, as well as natural, OFS-L, and OFS-B modified soil, were applied to Cyperus alternifolius plants without an additional layer. The removal capacity of Cd (II) was measured in the following order: modified clay > modified soil > original clay/soil > no layer, i.e., 99.48%, 92.22%, 88.10/78.5%, and 30.0%, respectively. OFS-L removed more Cd (II) than OFS-B during the modification. OFS-L now improves the bioavailability and accumulation of Cd (II) in the plant (18.5 µg/g) and has a higher chlorophyll-b concentration (1.92 mg/g fresh weight) than other systems. The wettable clay exhibited clay leaching into the various levels of the bioretention system. In the bioretention system, benzyl substituted clay prevented the penetration of water and formed a Cd (II) agglomeration. When compared to non-wettable modifiers, these results indicated that wettable clay material could be a capable material for removing Cd (II).


Author(s):  
Fadi Abdullah alanazi, Yaser Rashed Alzannan, Faten Hamed Na Fadi Abdullah alanazi, Yaser Rashed Alzannan, Faten Hamed Na

Souda is one of the important regions in Saudi Arabia in terms of spatial and temporal changes in vegetation cover; It includes the National Park, which is a leading tourist destination and one of the most beautiful parks in it. by tracking the spatial and temporal changes of vegetation cover by integrating remote sensing and geographic information systems, through the application of the modified soil vegetation index MSAVI during the period (2014- 2018), it became clear the decrease in the quantity and density of vegetation cover in the area. Thus, the study concluded that this indicator is one of the best indicators that can be used to extract vegetation cover from satellite images.


Author(s):  
M.K. Saha ◽  
H.R. Khan ◽  
M.S. Hossain ◽  
S. Akter

A field experiment was conducted to explore how rice (BINA Dhan 11 and BRRI Dhan 34) responds in modified soil and climatic conditions. They were planted on artificially prepared soil beds by mixing calcareous and acid soils in 1:1 and 1:3 ratios. Soil temperature (St) was elevated up to 20C over the diurnal ones. Moisture (M) was maintained at 50%, 70%, and saturated (100%) soil conditions. Vermicompost (V) was applied at the rates of 0, 10, and 15 tha-1. The number of tillers and plant height were recorded at 25 days intervals. The maximum number of 26 and 27 tillers for BINA Dhan 11 and BRRI Dhan 34 were recorded. The longest plant height was observed with the T10 (V15M100) treatment. The treatment T3 (V15M100) resulted in maximum fresh weight of shoot and shoot dry matter production for both rice varieties in 1:3 mixed soil. Both varieties performed well in 1:3 mixed soils and elevated temperature conditions, as observed for normal soils. This evidence concluded that the improvement of calcareous and acid soils through their mixing is a successful approach and confirmed by the treatments' usual responses on different rice growth parameters under these mixed soils.


Author(s):  
Yuheng Li ◽  
Xing Zeng ◽  
Zhi Lin ◽  
Jia Su ◽  
Tong Gao ◽  
...  

Abstract The phosphate rock has great potential value in the application of cut-off walls for heavy metal contaminated sites. The effects of initial concentration of Pb2+, contact time, temperature and pH on the adsorption performance of phosphate rock modified soil-bentonite (PSB) were analyzed by Batch tests, also the microstructure and physicochemical properties of the adsorbent were characterized and analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The results showed that the incorporation of phosphate rock improves the adsorption performance of the mixed material for Pb2+ in acidic environment, and the maximum adsorption amount of PSB can be 154% greater than that of soil-bentonite (SB). The kinetic analysis showed that intraparticle diffusion and liquid film diffusion participate in control of the adsorption process at the same time, and the Langmuir model could fit the isothermal adsorption data better. The adsorption process of PSB to Pb2+ is an exothermic reaction process, and the low temperature environment is beneficial to the adsorption of Pb2+. Studies on the microscopic mechanism show that the PO43− react with Pb2+ in the solution to form phosphate precipitation, and –OH and PO43− on the surface or interlayer of the adsorbent participate in the adsorption process of Pb2+.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5441
Author(s):  
Linfang Lu ◽  
Qiang Ma ◽  
Jing Hu ◽  
Qingfu Li

Silty soil has the characteristics of low natural moisture content and poor viscosity, and the strength and deformation required for foundation engineering can be satisfied by reinforcing and improving the silt. In order to study the reinforcement and improvement effects of polypropylene (PP) fiber and fly ash (FA) on cement–silty soil, an unconfined compressive strength (UCS) test, scanning electron microscope (SEM) test, and X-ray diffraction (XRD) analysis test were carried out. Cement (mixed amounts are 4%, 8%, 12%, and 16% of dry soil mass) was used as the basic modifier, and PP fiber (mixed amounts are 0%, 0.15%, 0.3%, and 0.45% of dry soil mass) compounded with FA (adding amounts of 0%, 5%, 10%, and 15% of dry soil mass) were used as an external admixture of cement–silty soil to study the mechanical properties, curing mechanism, and microstructure of the modified soil in different ages of 7 d, 14 d, 28 d, and 60 d. The test results show that with the increase in cement and curing age, the UCS of the modified soil increases, and with the increase in the PP fiber and FA, the UCS of the modified soil first increases and then decreases; there is an optimal content of FA and PP fiber, which are 10 and 0.15%, respectively. A large amount of C-S-H and AFt substances are produced inside the modified soil to cover the surface of soil particles or fill in the pores between soil particles, forming a tight spatial network structure and improving the mechanical properties of the cement–soil. The intensity of the diffraction peaks of the mineral components within the modified soils is more influenced by the cement and age, and the effect of FA is weaker. The stress–strain curve of the modified soil is divided into elastic stage, plastic deformation stage, and strain-softening stage, and the specimens in each stage have corresponding deformation characteristics. By analyzing the behavioral characteristics and curing improvement mechanism of modified soil from the duo perspective of macro-mechanical properties and microstructural composition, it can provide some basis for the engineering application of silty soil.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5138
Author(s):  
Fuyu Wang ◽  
Weichen Pang ◽  
Ziqi Li ◽  
Haibin Wei ◽  
Leilei Han

Frost heaving and boiling are the most common road disorders due to the special climatic conditions in a seasonal frozen area. From the perspective of controlling road disorders in seasonally frozen areas and making effective use of industrial waste residue, two kinds of subgrade modified soil—crumb rubber modified fly ash soil (CRFS) and oil shale waste residue modified fly ash soil (OSFS)—were proposed by the research group. The research results proved that the two new subgrade fillers both have excellent engineering characteristics in cold areas, such as high strength and low thermal conductivity, and both have the function of waste utilization, giving them broad application prospects. In road engineering, the instability of slopes and retaining walls and the uneven settlement of the subgrade are closely related to soil creep, which are problems that cannot be ignored in road design and use. As a new material to treat road disorders in seasonally frozen areas, more attention should be paid to the continuous deformation property of modified soil under long-term load. The study on the creep characteristics of the modified soil can provide reliable parameters for the design of the modified soil subgrade and predict the settlement of the subgrade after construction, which is of great significance to the stability of the subgrade. In this paper, an experimental study on the consolidation–creep characteristics of two kinds of subgrade modified soil in a seasonal frozen region was carried out, the relationship between modified soil deformation and time is discussed, and the effects of different moisture contents and compaction degrees on the creep characteristics of modified soil were analyzed. The test results provide parameters for the engineering design of modified soil subgrade and provide data support for the popularization and application of modified soil in seasonally frozen subgrade.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Shiwei Hou ◽  
Hao Zhang ◽  
Yuzhe Zhang ◽  
Xin Chen ◽  
Suyun Meng

Based on the concept of environmental protection of solid waste utilization, material testing is conducted to achieve native improvement using coal gangue-based limestone-calcined clay cement (LC3). Finite element (FE) models of rural raw-soil architecture with a colored-steel roof (RACSR) were established. The effect of modified soil type and seismic character on the vulnerability of single-story raw-soil structures was investigated using probabilistic seismic demand (PSD) analysis. The seismic response characteristics of 80 representative sequences were comparatively investigated when subjected to northwest clay (raw soil) of China, fiber and stone-improved clay (modified soil), and coal gangue-based limestone-calcined clay cement (LC3 soil). The maximum interstory drift angle (ISDAmax) was lower in the LC3 soil model and the modified soil model compared to the raw-soil model. The use of LC3 soil improves structural resistance and reduces the damage probability of a structure, and the influence of different ultimate failure states on the vulnerability of the raw-soil structure was studied.


Sign in / Sign up

Export Citation Format

Share Document