Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices

2020 ◽  
Vol 229 ◽  
pp. 105933 ◽  
Author(s):  
Zhen Liu ◽  
Feng-yun Ma ◽  
Tong-xi Hu ◽  
Kai-guang Zhao ◽  
Tian-ping Gao ◽  
...  
Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1624 ◽  
Author(s):  
Lijian Zheng ◽  
Juanjuan Ma ◽  
Xihuan Sun ◽  
Xianghong Guo ◽  
Qiyun Cheng ◽  
...  

The future production of irrigated fruit orchards in the Loess Plateau of China is threatened by a shortage of freshwater. To improve water use efficiency under conditions where irrigation is limited, it is necessary to quantify the root water uptake (RWU) of apple trees. The RWU of apple trees was estimated under surface irrigation using water stable isotope technology and the Hydrus-1D model. Using the Romero-Saltos and IsoSource models, the stable isotopes of water in stems, different soil depths, and different precipitation were analyzed in a 5-year-old dwarfing apple orchard during two seasons 2016 and 2017. Hydrus-1D model was able to simulate the RWU of apple using the maximum coefficient of determination (0.9), providing a root mean square error of 0.019 cm3 cm−3 and a relative error of 2.25%. The results showed that the main depth of RWU ranged from 0–60 cm during the growth season, with the main contribution occurring in the 0–40 cm depth. These findings indicated that reducing the traditional surface irrigation depth will be important for improving the irrigation water use efficiency.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Jia ◽  
Ke Mao ◽  
Ping Wang ◽  
Yu Wang ◽  
Xumei Jia ◽  
...  

AbstractWater deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.


2012 ◽  
Vol 59 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
B. Wang ◽  
W. Liu ◽  
Q. Xue ◽  
T. Dang ◽  
C. Gao ◽  
...  

The objective of this study was to investigate the effect of nitrogen (N) management on soil water recharge, available soil water at sowing (ASWS), soil water depletion, and wheat (Triticum aestivum L.) yield and water use efficiency (WUE) after long-term fertilization. We collected data from 2 experiments in 2 growing seasons. Treatments varied from no fertilization (CK), single N or phosphorus (P), N and P (NP), to NP plus manure (NPM). Comparing to CK and single N or P treatments, NP and NPM reduced rainfall infiltration depth by 20–60 cm, increased water recharge by 16–21 mm, and decreased ASWS by 89–133 mm in 0–300 cm profile. However, crop yield and WUE continuously increased in NP and NPM treatments after 22 years of fertilization. Yield ranged from 3458 to 3782 kg/ha in NP or NPM but was 1246–1531 kg/ha in CK and single N or P. WUE in CK and single N or P treatments was < 6 kg/ha/mm but increased to 12.1 kg/ha/mm in a NP treatment. The NP and NPM fertilization provided benefits for increased yield and WUE but resulted in lower ASWS. Increasing ASWS may be important for sustainable yield after long-term fertilization.


2006 ◽  
Vol 26 (7) ◽  
pp. 2079-2086 ◽  
Author(s):  
Fengjun Zhao ◽  
Yingbai Shen ◽  
Rongfu Gao ◽  
Xiaohua Su ◽  
Bingyu Zhang

2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Milan Borišev ◽  
Rita Horak ◽  
Slobodanka Pajević ◽  
Saša Orlović ◽  
Nataša Nikolić ◽  
...  

AbstractThe paper presents the impact of periodic soil drought on physiological parameters important for bioproductivity of mountain beech populations. The investigated forest population was located near Fruška gora mountain peak, where water runs off quickly, and consequently lack of soil humidity develops very often. Decreasing trends of photosynthesis, transpiration, water use efficiency and stomatal conductance (gs) during the growing season were evident, in correlation with a shortage of precipitation. Diurnally, photosynthesis of beech leaves showed rhythmical changes. It was the most intensive in the morning, then decreased between noon and 1 pm, and increased again during early afternoon. High leaf temperature and water deficit in the deeper soil layers caused a decreasing trend in photosynthesis and daily rhythmic changes of the transpiration rate and water use efficiency. Although surface soil water capacity did not show a significant decreasing trend from July to September, a lack of precipitation was observed, which probably caused a lack of moisture in deeper soil layers, resulting in a decline in photosynthesis and transpiration. Physiological status, linked to primary photosynthetic productivity of forests, could be a significant indicator of environmental conditions and trends in climate changes.


Sign in / Sign up

Export Citation Format

Share Document