Physiological responses of argentine peanut varieties to water stress. Water uptake and water use efficiency

2000 ◽  
Vol 68 (2) ◽  
pp. 133-142 ◽  
Author(s):  
D.J Collino ◽  
J.L Dardanelli ◽  
R Sereno ◽  
R.W Racca
2012 ◽  
Vol 212-213 ◽  
pp. 578-585
Author(s):  
Zhong Wen Yang ◽  
Jun Ying Jin ◽  
Xin Yi Xu

Water stress is an important approach to use water resources efficiently and remit the agricultural water shortage. Hemarthria compressa is one of perennial grasses, a pasture of high quality, which has abundant species resources in China. To explore the response of the growth, yield and water use efficiency(WUE) of Hemarthria compressa under water stress, this study, adapting pot experiment, imposed three water stress degree (LD, MD and SD) treatments and a control treatment on Hemarthria compressa. The data of growth indicators during control period, yield and total water consumption were obtained. The results show a noticeable inhibitory action of water stress on the growth of Hemarthria compressa. Along with the intensifying of water stress, plant height increment, leaf area, total biomass, dry matter of each organ and yield decreased, and the root-shoot ratio increased firstly and inclined to slump finally. Plants under the middle water stress treatment achieved the greatest WUE of 38.25 kg/m3. The first 10d in the water control period was the most sensitive period of the pasture responding to water stress.


HortScience ◽  
2018 ◽  
Vol 53 (12) ◽  
pp. 1784-1790 ◽  
Author(s):  
Dalong Zhang ◽  
Yuping Liu ◽  
Yang Li ◽  
Lijie Qin ◽  
Jun Li ◽  
...  

Although atmospheric evaporative demand mediates water flow and constrains water-use efficiency (WUE) to a large extent, the potential to reduce irrigation demand and improve water productivity by regulating the atmospheric water driving force is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in cucumber (Cucumis sativus L.) grown at contrasting evaporative demand gradients. Reducing the excessive vapor pressure deficit (VPD) decreased the water flow rate, which reduced irrigation consumption significantly by 16.4%. Reducing excessive evaporative demand moderated plant water stress, as leaf dehydration, hydraulic limitation, and excessive negative water potential were prevented by maintaining water balance in the low-VPD treatment. The moderation of plant water stress by reducing evaporative demand sustained stomatal function for photosynthesis and plant growth, which increased substantially fruit yield and shoot biomass by 20.1% and 18.4%, respectively. From a physiological perspective, a reduction in irrigation demand and an improvement in plant productivity were achieved concomitantly by reducing the excessive VPD. Consequently, WUE based on the criteria of plant biomass and fruit yield was increased significantly by 43.1% and 40.5%, respectively.


2017 ◽  
Vol 16 (2) ◽  
Author(s):  
M.E.A. Borba ◽  
G.M. Maciel ◽  
E.F. Fraga Júnior ◽  
C.S. Machado Júnior ◽  
G.R. Marquez ◽  
...  

2014 ◽  
Vol 94 (2) ◽  
pp. 303-310 ◽  
Author(s):  
Olanike Aladenola ◽  
Chandra Madramootoo

Aladenola, O. and Madramootoo, C. 2014. Response of greenhouse-grown bell pepper (Capsicum annuum L.) to variable irrigation. Can. J. Plant Sci. 94: 303–310. In order to optimize water use in bell pepper production information about the appropriate irrigation water applications and agronomic and physiological response to mild and severe water stress is necessary. Different water applications were tested on yield, quality and water stress threshold of greenhouse-grown bell pepper (Capsicum annuum L.) cultivar Red Knight in 2011 and 2012 on the Macdonald Campus of McGill University, Ste Anne De Bellevue, QC. The study was carried out on a soil substrate in the greenhouse. Irrigation was scheduled with four treatments:120% (T1), 100% (T2), 80% (T3), and 40% (T4) replenishment of crop evapotranspiration in a completely randomized design. The highest marketable yield, water use efficiency and irrigation water use efficiency were obtained with T1 in both years. T1 received 20% more water than T2 to produce 23% more marketable yield than T2. Fruit total soluble solids content was highest in T4, and smallest in T1. The mean crop water stress index (CWSI) of the irrigation treatments ranged between 0.08 and 1.18. Leaf stomatal conductance of bell pepper was 75 to 80% lower in T4 than in T1. Regression obtained between stomatal conductance and CWSI resulted in a polynomial curve with coefficients of determination of 0.88 and 0.97 in 2011 and 2012, respectively. The result from this study indicate that the yield derived justifies the use of an extra quantity of water. Information from this study will help water regulators to make appropriate decision about water to be allocated for greenhouse production of bell pepper.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1624 ◽  
Author(s):  
Lijian Zheng ◽  
Juanjuan Ma ◽  
Xihuan Sun ◽  
Xianghong Guo ◽  
Qiyun Cheng ◽  
...  

The future production of irrigated fruit orchards in the Loess Plateau of China is threatened by a shortage of freshwater. To improve water use efficiency under conditions where irrigation is limited, it is necessary to quantify the root water uptake (RWU) of apple trees. The RWU of apple trees was estimated under surface irrigation using water stable isotope technology and the Hydrus-1D model. Using the Romero-Saltos and IsoSource models, the stable isotopes of water in stems, different soil depths, and different precipitation were analyzed in a 5-year-old dwarfing apple orchard during two seasons 2016 and 2017. Hydrus-1D model was able to simulate the RWU of apple using the maximum coefficient of determination (0.9), providing a root mean square error of 0.019 cm3 cm−3 and a relative error of 2.25%. The results showed that the main depth of RWU ranged from 0–60 cm during the growth season, with the main contribution occurring in the 0–40 cm depth. These findings indicated that reducing the traditional surface irrigation depth will be important for improving the irrigation water use efficiency.


Sign in / Sign up

Export Citation Format

Share Document