scholarly journals The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L)

2021 ◽  
Vol 245 ◽  
pp. 106584
Author(s):  
Paul Reuben Mwinuka ◽  
Boniface P. Mbilinyi ◽  
Winfred B. Mbungu ◽  
Sixbert K. Mourice ◽  
H.F. Mahoo ◽  
...  
2021 ◽  
Author(s):  
Sanbon Gosa ◽  
Amit Koch ◽  
Itamar Shenhar ◽  
Joseph Hirschberg ◽  
Dani Zamir ◽  
...  

To address the challenge of predicting tomato yields in the field, we used whole-plant functional phenotyping to evaluate water relations under well-irrigated and drought conditions. The genotypes tested are known to exhibit variability in their yields in wet and dry fields. The examined lines included two lines with recessive mutations that affect carotenoid biosynthesis, zeta z2083 and tangerine t3406, both isogenic to the processing tomato variety M82. The two mutant lines were reciprocally grafted onto M82 and multiple physiological characteristics were measured continuously, as well as before, during and after drought treatment in the greenhouse. A comparative analysis of greenhouse and field yields showed that the whole-canopy stomatal conductance (gsc) in the morning and cumulative transpiration (CT) were strongly correlated with field measurements of total yield (TY: r2 = 0.9 and 0.77, respectively) and plant vegetative weight (PW: r2 = 0.6 and 0.94, respectively). Furthermore, the minimum CT during drought and the rate of recovery when irrigation was resumed were both found to predict resilience. Keywords: drought tolerance, functional genomic mapping, functional phenotyping, physiological trait, time-series measurements, tomato, yield prediction, yield-prediction models


2017 ◽  
Vol 8 (2) ◽  
pp. 520-524
Author(s):  
S. Gutiérrez ◽  
M. P. Diago ◽  
J. Fernández-Novales ◽  
J. Tardaguila

The goal of this work was the assessment of commercial vineyard water status using on-the-go thermal imaging. On-the-go thermal imaging acquisition was conducted with a thermal camera operating at 1.20 m distance from the canopy, mounted on a quad moving at 5 km/h. Canopy temperature, cross water stress index (CWSI) and stomatal conductance index (Ig) were strongly and significantly correlated to stem water potential (Ψstem) in east and west side of the canopy. For CWSI, the values of the coefficient of determination (R2) were 0.88*** and 0.73*** for east and west sides, respectively. As regards the index Ig, its relationships with Ψstem showed R2=0.89*** and R2=0.77*** for east and west sides, respectively. These results are promising and evidence the potential of on-the-go thermal imaging to become a new tool to evaluate the vineyard water status.


2020 ◽  
Vol 85 (4) ◽  
pp. 903-909 ◽  
Author(s):  
Shoaib Younas ◽  
Changhong Liu ◽  
Hao Qu ◽  
Yu Mao ◽  
Wei Liu ◽  
...  

2020 ◽  
Author(s):  
Rakesh Chandra Joshi ◽  
Dongryeol Ryu ◽  
Gary J. Sheridan ◽  
Patrick N.J. Lane

<p>Remote sensing techniques are widely used to evaluate the biophysical status of vegetation, including water stress caused by soil water deficit. Based on the nominal links between water stress condition, transpiration and canopy temperature in the vegetation, numerous studies have used a trapezoidal relationship between Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) over vegetated surfaces to develop the water stress metric, in which the level of stress could be identified by the spatial location of the pixels on the spectral space (Goetz and Goetz 1997; Lambin, Lambin, and Ehrlich 1996; Nemani et al. 1993; Nemani and Running 1989; Price 1990; Sandholt, Rasmussen, and Andersen 2002). However, the amount of change in canopy temperature could also vary spatially by the canopy water status at that time. Thus, LST-NDVI alone cannot construct an efficient metric to see the spatial patterns of water stress at ecosystem level unless they are coupled with water status of vegetation at that moment. This study hypothesizes that a metric which can combine LST-NDVI information with an indicator for canopy water status could give more accurate estimations of the real-time vegetation water stress. The remotely sensed plant canopy water status indicator (a metric based on canopy reflection in the Short-Wave Infrared region (SWIR)) could add the canopy water status information to the LST-NDVI based indices, which may better explain spatial/temporal water stress condition in the plants especially in densely forested areas where signal saturation is a major issue. In this study, the third-dimensional information of SWIR has been combined with LST-NDVI spectral space to create a new remotely sensed vegetation water stress index, TVWSI (Temperature Vegetation Water Stress Index) which seems to be more realistic to capture stress dynamics at large scale. </p><p>Sixty grids (2 km X 2 km) each containing 16 pixels of daily MODIS-reflectance (band 1 – band 7, 500 m spatial resolution) and 4 pixels of daily MODIS-LST (1 km spatial resolution) were chosen over forested areas in Victoria representing most of the bioregions as classified by the Interim Biogeographic Regionalisation for Australia (IBRA7). From 2002 to 2018 daily TVWSI values of each grid were evaluated against the modelled daily available soil moisture content in the top 1 m of the soil profile, and rainfall data, from the Australian Bureau of Meteorology (BOM). TVWSI performed better than other dryness indices mentioned in the literature. A high correlation was obtained between TVWSI vs. soil moisture and TVWSI vs. rainfall with a coefficient of determination value of 0.6 (p<0.001) and 0.61 (p<0.001) respectively when data were combined spatially and temporally. Even improved correlations ranging (0.4-0.7, p<0.001) were obtained for individual grids over the mentioned period. While correlation ranging (0.15-0.48, p<0.001) were obtained using dryness indices like Perpendicular Drought Index (PDI), Modified PDI (MPDI), Temperature Vegetation Dryness Index (TVDI) and Vegetation Supply Water Index (VSWI). The result shows that the TVWSI can capture real-time ecosystem water stress well and the metric could be an efficient input parameter for many hydrological, drought and fire prediction models.</p><p> </p>


PLoS ONE ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. e0192037 ◽  
Author(s):  
Salvador Gutiérrez ◽  
María P. Diago ◽  
Juan Fernández-Novales ◽  
Javier Tardaguila

2014 ◽  
Vol 127 (12) ◽  
pp. 2695-2709 ◽  
Author(s):  
Tyson Howell ◽  
Iago Hale ◽  
Ljupcho Jankuloski ◽  
Marcos Bonafede ◽  
Matthew Gilbert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document