A modelling platform for climate change impact on local and regional crop water requirements

2021 ◽  
Vol 255 ◽  
pp. 107005
Author(s):  
Sara Masia ◽  
Antonio Trabucco ◽  
Donatella Spano ◽  
Richard L. Snyder ◽  
Janez Sušnik ◽  
...  
2019 ◽  
Vol 8 (1) ◽  
pp. 94
Author(s):  
Stulina Galina ◽  
Solodkiy Georgy ◽  
Eshtchanov Odilbek

Khorezm province is located in the northwest part of Uzbekistan in the basin of one of largest water sources – the Amu Darya River - and occupies the left bank in the Amu Darya lower reaches. The area of the province is 6,100 km2. The province borders Karakalpakstan in the North, Turkmenistan in the South, and Bukhara province of Uzbekistan in the South-East. Uzbekistan is situated in the territory, where high rates of climate change are expected and observed. According to forecasts, further climate change would cause even higher air temperatures, altered precipitation patterns and severe and prolonged droughts, with consequent lowering of available water resources. More plausible scenarios for Uzbekistan suggest more than 4°С rise in average annual air temperatures by 2080. Water discharge along the Amu Darya River is expected to decrease potentially by 10-15%. Objective of given work is to analyze and assess the positive impacts of climate change through alterations of bioclimatic potential in given terrain and agromelioration parameters of crops, with consequent changes in crop water requirements. Earlier research results showed that the observed growth of thermal potential allows earlier sowing and more rapid accumulation of effective temperatures. This will shorten plant development phases, on the one hand, and, as a result, reduce water use by crops, on the other hand.


Author(s):  
V. U. M. Rao ◽  
A. V. M. S. Rao ◽  
G. G. S. N. Rao ◽  
T. Satyanarayana ◽  
N. Manikandan ◽  
...  

2021 ◽  
Author(s):  
Hanish Dadool ◽  
Sai Jagadeesh Gaddam ◽  
Prasanna Venkatesh Sampath

<p>Increasing anthropogenic stresses have challenged the global population's ability to meet the growing demands of food, energy, and water (FEW). With the population set to hit 9 billion by 2050, it becomes indispensable to manage these three vital resources sustainably. Moreover, climate change is expected to have adverse consequences on agriculture, which is one of the primary occupations in developing countries like India. Extreme weather events caused by climate change could impact agricultural productivity severely, affecting economic-food-water-energy security. Hence, there is a dire need to study the impact of climate on agricultural production and its supporting resources – water and energy. Although studying the nexus between FEW is gaining attention lately, evaluating the future FEW interactions in the agricultural sector with an emphasis on climate change is missing. Therefore, this study employs a data-intensive approach to quantify the current and future FEW interactions under the impact of climate change.</p><p>First, FAO's CROPWAT 8.0 model was used to estimate crop water requirements for major crops like paddy, sugarcane, groundnut, cotton, and maize in the study area of Andhra Pradesh state, India. CROPWAT uses a soil water balance approach that requires information about several datasets like evapotranspiration, rainfall, soil, and crop information. Massive datasets such as farm-level agricultural data, station-wise rainfall data, and reference evapotranspiration data were incorporated into the model. Second, we calculate the future crop water requirements using future rainfall and temperature datasets, available till 2095, from Global Climate Models (GCMs) under the Representative Concentration Pathway (RCP) 4.5 emission scenario. To achieve this at the district-scale, we downscaled the information regarding temperature using the delta change method and applied the Thornthwaite method to estimate the reference evapotranspiration. Then, energy consumed by each crop in every district was quantified. Third, we estimated the current and future FEW interactions using the commonly employed two-at-one-time methodology.</p><p>Results indicated that water-intensive crops like paddy and sugarcane account for most groundwater and energy consumption. Southern districts of the state consume relatively more groundwater and energy than the northern regions. Further, high water-intensive crops like paddy were being cultivated in several dry regions, furthering the groundwater resources depletion and rising energy costs. For instance, in Kurnool district, the irrigation water requirements for paddy increased by almost 20% from the 2020s (644 mm) to the 2090s (772 mm). Clearly, such an increase can be attributed to a changing climate causing increased evapotranspiration. The resulting increase in groundwater and energy consumption, has the potential to endanger food and water security in countries like India. The approach outlined in this study also allows us to identify vulnerable hotspots that would enable policymakers to design effective adaptation strategies in the agricultural sector. The synergistic benefits offered by FEW nexus approaches have the potential to ensure food security at local and global scales.</p>


2020 ◽  
Author(s):  
Emmanuel Eze ◽  
Atkilt Girma ◽  
Amanuel Zenebe ◽  
Jean Moussa Kourouma ◽  
Gebreyohannes Zenebe

Abstract The need for accurate and meaningful agricultural data as the means of making vibrant policies and informed decisions, is an increasing concern for policymakers in developing countries such as Ethiopia, where such information is usually scarce. In Ethiopia, the impacts of climate change on crops yields is rarely available at the lowest administrative levels such as wards/villages, for the benefits of the grassroots’ populace. Thus, this research sought to evaluate the use of crop water requirements in the estimation of crops’ yield. FAO’s CROPWAT 8.0 application was used to pre-determine the possibility, preceding the use of CROWRAYEM. Both CROPWAT and CROWRAYEM had high coefficients of determination, when tested with a survey data of barley and sorghum farmers’ yield for the 2015 to 2018 cropping season in semi-arid southern Tigray, northern Ethiopia. Furthermore, the infusion of the crop yield into a recently published area yield index insurance payout structure, increases the functionality of the proposed yield estimated model (CROWRAYEM).


Author(s):  
Ružica Stričević ◽  
Goran Trbić ◽  
Mirjam Vujadinović ◽  
Ana Vuković ◽  
Aleksa Lipovac ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document