amu darya
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 95)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Zheng Wang ◽  
Yue Huang ◽  
Tie Liu ◽  
Chanjuan Zan ◽  
Yunan Ling ◽  
...  

Lower reaches of the Amu Darya River Basin (LADB) is one of the typical regions which is facing the problem of water shortage in Central Asia. During the past decades, water resources demand far exceeds that supplied by the mainstream of the Amu Darya River, and has resulted in a continuous decrease in the amount of water flowing into the Aral Sea. Clarifying the dynamic relationship between the water supply and demand is important for the optimal allocation and sustainable management of regional water resources. In this study, the relationship and its variations between the water supply and demand in the LADB from the 1970s to 2010s were analyzed by detailed calculation of multi-users water demand and multi-sources water supply, and the water scarcity indices were used for evaluating the status of water resources utilization. The results indicated that (1) during the past 50 years, the average total water supply (TWS) was 271.88 × 108 m3/y, and the average total water demand (TWD) was 467.85 × 108 m3/y; both the volume of water supply and demand was decreased in the LADB, with rates of −1.87 × 108 m3/y and −15.59 × 108 m3/y. (2) percentages of the rainfall in TWS were increased due to the decrease of inflow from the Amu Darya River; percentage of agriculture water demand was increased obviously, from 11.04% in the 1970s to 44.34% in 2010s, and the water demand from ecological sector reduced because of the Aral Sea shrinking. (3) the supply and demand of water resources of the LADB were generally in an unbalanced state, and water demand exceeded water supply except in the 2010s; the water scarcity index decreased from 2.69 to 0.94, indicating the status changed from awful to serious water scarcity. A vulnerable balanced state has been reached in the region, and that water shortages remain serious in the future, which requires special attention to the decision-makers of the authority.


2022 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Zhibin Liu ◽  
Tie Liu ◽  
Yue Huang ◽  
Yangchao Duan ◽  
Xiaohui Pan ◽  
...  

The intensity of agricultural activities and the characteristics of water consumption affect the hydrological processes of inland river basins in Central Asia. The crop water requirements and water productivity are different between the Amu Darya and Syr Darya river basins due to the different water resource development and utilization policies of Uzbekistan and Kazakhstan, which have resulted in more severe agricultural water consumption of the Amu Darya delta than the Syr Darya delta, and the differences in the surface runoff are injected into the Aral Sea. To reveal the difference in water resource dissipation, water productivity, and its influencing factors between the two basins, this study selected the irrigation areas of Amu Darya delta (IAAD) and Syr Darya delta (IASD) as typical examples; the actual evapotranspiration (ETa) was retrieved by using the modified surface energy balance algorithm for land model (SEBAL) based on high spatial resolution Landsat images from 2000 to 2020. Land use and cover change (LUCC) and streamflow data were obtained to analyze the reasons for the spatio-temporal heterogeneity of regional ETa. The water productivity of typical crops in two irrigation areas was compared and combined with statistical data. The results indicate that: (1) the ETa simulated by the SEBAL model matched the crop evapotranspiration (ETc) calculated by the Penman–Monteith method and ground-measured data well, with all the correlation coefficients higher than 0.7. (2) In IAAD, the average ETa was 1150 mm, and the ETa had shown a decreasing trend; for the IASD, the average ETa was 800 mm. The ETa showed an increasing trend with low stability due to a large amount of developable cultivated land. The change of cultivated land dominated the spatio-temporal characteristics of ETa in the two irrigation areas (3). Combined with high spatial resolution ETa inversion results, the water productivity of cotton and rice in IAAD was significantly lower than in IASD, and wheat was not significantly different, but all were far lower than the international average. This study can provide useful information for agricultural water management in the Aral Sea region.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Yunpeng Shan ◽  
Hongjun Wang ◽  
Liangjie Zhang ◽  
Penghui Su ◽  
Muwei Cheng ◽  
...  

In order to provide paleofluid evidence of hydrocarbon accumulation periods in the Amu Darya Right Bank Block, microexperiments and simulations related to the Middle-Upper Jurassic Callovian-Oxfordian carbonate reservoirs were performed. On the basis of petrographic observation, the diagenetic stages were divided by cathodoluminescence, and the entrapment stages of fluid inclusions were divided by laser Raman experiment and UV epifluorescence. The hydrocarbon generation (expulsion) curve and burial (thermal) history curve of source rocks were simulated by using real drilling data coupled with geochemical parameters of source rocks, such as total organic carbon (TOC) and vitrinite reflectance ( R o ). The above results were integrated with microthermometry of fluid inclusions by inference the timing of hydrocarbon migration into the carbonate reservoirs. The horizon-flattening technique was used to process the measured seismic profile and restore the structural evolution profile. Four diagenetic periods and three hydrocarbon accumulation periods were identified. (i) For Syntaxial stage, the fluid captured by the overgrowing cement around particles is mainly seawater; (ii) for (Early) Mesogenetic burial stage, the calcite cements began to capture hydrocarbon fluids and show yellow fluorescence under UV illumination; (iii) for (Late) Mesogenetic burial stage, two sets of cleavage fissures developed in massive calcite cements, and oil inclusions with green fluorescence were entrapped in the crystal; (iv) for Telogenetic burial stage, blue fluorescent inclusions along with hydrocarbon gas inclusions developed in dully luminescent calcite veins. Based on the accurate division of hydrocarbon migration and charging stages, combined with the structural evolution history of the traps, the hydrocarbon accumulation model was established. Because two of the three sets of source rocks are of marine origin, resulting in the lack of vitrinite in the kerogen of those source rocks, there may be some deviation between the measured value of R o and the real value. Some systematic errors may occur in the thermal history and hydrocarbon generation (expulsion) history of the two sets of source rocks. Due to the limitations of seismic horizon-flattening technique—such as the inability to accurately recover the inclined strata thickness and horizontal expansion of strata—the final shape of the evolution process of structural profile may also deviate from the real state in geological history. The accumulation model established in this study was based upon the fluid inclusion experiments, which can effectively characterize the forming process of large condensate gas reservoirs in the Amu Darya Right Bank Block and quantify the timing of hydrocarbon charging. However, the hydrocarbon migration and accumulation model does not take the oil-source correlation into account, but only the relationship between the mature state of source rocks and the timing of hydrocarbon charging into the reservoirs. Subsequent research needs to conduct refined oil-source correlation to reveal the relationship between gas, condensate, source rocks, and recently discovered crude oil and more strictly constrain and modify the accumulation model, so as to finally disclose the origin of the crude oil and oil reservoir forming process in the Amu Darya Right Bank Block, evaluate the future exploration potential, and point out the direction of various hydrocarbon resources (condensate gas and crude oil).


Author(s):  
Azizkhan Zh. Toreniyazov ◽  

The Akshakhan-kala is located on the right bank of the Amu Darya, in the Biruni district of the Republic of Karakalpakstan. Over the years of archaeological study of the site, a large ceramic material was collected, dating back to the 3rd cent. BCE - 5th cent. AC. In the archaeological collection of the site, a group of finds is distinguished, attributed to the category of building ceramics. The article is devoted to the analysis of this collection and an attempt to determine the field of application of certain types of building ceramics. Among the building ceramics of the Akshakhan settlement stand out spillway pipes and ceramic tiles. The use of fragments of ceramic vessels in the construction was also recorded. The obtained analysis results suggest that in ancient Khwarezm, ceramic building materials were used to solve such problems as protecting structures from atmospheric precipitation, improving settlements and increasing the strength of adobe structures.


2021 ◽  
Author(s):  
Obaidullah Salehie ◽  
Mohammed Magdy Hamed ◽  
Tarmizi bin Ismail ◽  
Shamsuddin Shahid

Abstract Droughts significantly affect socioeconomic and the environment primarily by decreasing the water availability of a region. This study aims to assess the changes in drought characteristics in Central Asia's transboundary Amu Darya river basin for four shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The precipitation, maximum and minimum temperature (Pr, Tmx and Tmn) simulations of 19 global climate models (GCMs) of the coupled model intercomparison project phase 6 (CMIP6) were used to select the best models to prepare the multimodel ensemble (MME). The standard precipitation evapotranspiration index (SPEI) was used to estimate droughts for multiple timescales from Pr and potential evapotranspiration (PET) derived from Tmx and Tmn. The changes in the frequency and spatial distribution of droughts for different severities and timescales were evaluated for the two future periods, 2020–2059 and 2060-2099, compared to the base period of 1975-2014. The study revealed four GCMs, AWI-CM-1-1-MR, CMCC-ESM2, INM-CM4-8 and MPI-ESM1-2-LR, as most suitable for projections of droughts in the study area. The multimodel ensemble (MME) mean of the selected GCMs showed a decrease in Pr by -3 to 12% in the near future and a change in the range of 3 to -9% in the far future in most parts of the basin for different SSPs. The PET showed almost no change in most parts of the basin in the near future and an increase in the range of 10 to 70% in the far future. The change (%) in projected drought occurrence showed to noticeably decrease in the near future, particularly for moderate droughts by up to ≤-50% for SSP5-8.5 and an increase in the far future by up to ≥30% for SSP3-7.0. The increase in all severities of droughts was projected mostly in the center and northwest of the basin. Overall, the results showed a drought shift from the east to the northwest of the basin in the future.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7471
Author(s):  
Serdar Korpayev ◽  
Meretdurdy Bayramov ◽  
Serdar Durdyev ◽  
Hemra Hamrayev

This study examined the chemical, mineralogical, physical, thermal, and technological characteristics of the Dostluk (DM), Halach (HM), and Sakar (HM) clay deposits located in the Amu-Darya basin of Turkmenistan. The potential suitability of these deposits was evaluated for the local ceramic brick industry. The chemical and mineralogical features were identified by X-ray fluorescence (XRF), ion chromatography (IC), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) techniques. The physical properties were characterized by granulometric analysis by sieving, particle size distribution, scanning electron microscopy/optic analysis, specific surface area, Pfefferkon’s plasticity index, reabsorption, shrinkage, water absorption, mechanical (compression and bending), and freeze–thaw durability tests. The thermal methods were performed using dilatometry and thermogravimetric/differential thermal analyzer (TG/DTA). The test samples for the different clay deposits were extruded, dried, and fired at three different temperatures of 850 °C, 950 °C, and 1050 °C. While the Dostluk and Sakar clays have high plasticity, Halach clay has been found to have low plasticity. The mechanical and freeze–thaw durability tests demonstrated that the outcomes of the clays of different origins were sufficient, achieving compressive strengths of over 10 MPa and mass loss less than 3%, which are acceptable by industry standards. Semi-industrial processed hollow bricks demonstrated promising characteristics. While the Dostluk and Sakar clay-based brick specimens were visibly free of cracks, the Halach specimens showed some cracks. The physical and mechanical improvements of these clays were performed with three mixtures, which are M1 (80 mass% DM + 20 mass% brick waste), M2 (85 mass% SM + 15 mass% brick waste), and M3 (70 mass% HM + 25 mass% SM and 5 mass% brick waste) for the brick industry.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3385
Author(s):  
Ye Lyu ◽  
Yue Huang ◽  
Anming Bao ◽  
Ruisen Zhong ◽  
Han Yang

In this study, the Amu Darya river basin, Syr Darya river basin and Balkhash lake basin in Central Asia were selected as typical study areas. Temporal/spatial changes from 2002 to 2016 in the terrestrial water storage (TWS) and the groundwater storage (GWS) were analyzed, based on RL06 Mascon data from the Gravity Recovery and Climate Experiment (GRACE) satellite, and the sum of soil water content, snow water equivalent and canopy water data that were obtained from Global Land Data Assimilation System (GLDAS). Combing meteorological data and land use and cover change (LUCC) data, the joint impact of both human activities and climate change on the terrestrial water storage change (TWSC) and the groundwater storage change (GWSC) was evaluated by statistical analysis. The results revealed three findings: (1) The TWS retrieved by CSR (Center for Space Research) and the JPL (Jet Propulsion Laboratory) showed a decreasing trend in the three basins, and the variation of TWS showed a maximum surplus in spring (March–May) and a maximum deficit in autumn (September–November). (2) The decreasing rates of groundwater storage that were extracted, based on JPL and CSR Mascon data sets, were −2.17 mm/year and −3.90 mm/year, −3.72 mm/year and −4.96 mm/year, −1.74 mm/year and −3.36 mm/year in the Amu Darya river basin, Syr Darya river basin and Balkhash lake basin, respectively. (3) In the Amu Darya river basin, annual precipitation showed a decreasing trend, while the evapotranspiration rate showed an increasing trend due to an increasing temperature, and the TWS decreased from 2002 to 2016 in most areas of the basin. However, in the middle reaches of the Amu Darya river basin, the TWS increased due to the increase in cultivated land area, water income from flooded irrigation, and reservoir impoundment. In the upper reaches of the Syr Darya river basin, the increase in precipitation in alpine areas leads to an increase in glacier and snow meltwater, which is the reason for the increase in the TWS. In the middle and lower reaches of the Syr Darya river basin, the amount of evapotranspiration dissipation exceeds the amount of water replenished by agricultural irrigation, which leads to a decrease in TWS and GWS. The increase in precipitation in the northwest of the Balkhash lake basin, the increase in farmland irrigation water, and the topography (higher in the southeast and lower in the northwest) led to an increase in TWS and GWS in the northwest of the Balkhash lake basin. This study can provide useful information for water resources management in the inland river basins of Central Asia.


2021 ◽  
Author(s):  
Obaidullah Salehie ◽  
Mohammed Magdy Hamed ◽  
Tarmizi Ismail ◽  
Tze Huey Tam ◽  
Shamsuddin Shahid

Abstract Global Climate Models (GCMs) are considered the most feasible tools to estimate future climate change. The objective of this study was to assess the interpretation of 19 GCMs of Coupled Model Intercomparison Project 6 (CMIP6) in replicating the historical precipitation and temperature of climate prediction center data for the Amu Darya river basin (ADRB) and the projection of climate of the basin using the selected GCMs. The Kling Gupta efficiency (KGE) metric was used to assess the effectiveness of GCMs to simulate the annual geographic variability of precipitation, maximum and minimum temperature (Pr, Tmx and Tmn). A multi-criteria decision-making approach (MCDMA) was used to integrate the KGE values to rank GCMs. The results revealed that MPI-ESM1-2-LR, CMCC-ESM2, INM-CM4-8 and AWI-CM-1-1-MR are the best in replicating observed Pr, Tmx and Tmn in ADRB. Projection of climate employing the selected GCMs indicated an increase in precipitation (9.9-12.4%) and temperature (1.3-5.5⁰C) in the basin for all the shared socioeconomic pathways (SSPs), particularly for the far future (2060-2099). A significant variation can be seen in temperature over the different climatic zone. However, the intercomparison of selected GCM projected revealed high uncertainty in the projected climate. The uncertainty is higher in the far future and higher SSPs compared to the near future and lower SSPs.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Rodrigo Portero ◽  
Agnese Fusaro ◽  
Raquel Piqué ◽  
Josep M. Gurt ◽  
Mikelo Elorza ◽  
...  

The aim of this paper is to understand the ways of life for the inhabitants of Termez (Uzbekistan) and its surrounding environment through the analysis of the zooarchaeological, charcoal, and ceramic material found inside a domestic combustion structure (tannur) dated to the early Islamic period (8th and 9th centuries AD). The tannur was located in a manufacturing area outside the city walls of old Termez, discovered during the 2018–2019 archaeological campaigns of the Uzbek-Spanish team IPAEB. The analysis of the charcoal hints at an abundance of local floral taxa that was used as firewood. The faunal remains indicate the presence of birds, mammals and fish at the site. The zooarchaeological study reveals the exploitation of the fluvial resources through the presence of fish of the Cyprinidae family in the vicinity of the Amu Darya. The scarcity of cut marks on and thermoalteration of the mammalian remains inside the tannur lead us to believe that the presence of the bones inside the container is related to their disposal rather than the use of the oven for cooking. Finally, the ceramic items collected in the tannur belong to the same wares and types identified in the assemblages collected from a workshop area at the site and are typical of the early Islamic period.


Sign in / Sign up

Export Citation Format

Share Document