Effects of anecic earthworms on runoff and erosion on the slope with soil from the Loess Plateau under a rainfall simulation experiment

2022 ◽  
Vol 259 ◽  
pp. 107230
Author(s):  
Shuhai Wen ◽  
Jiao Wang ◽  
Yanpei Li ◽  
Ming’an Shao
Soil Research ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 667 ◽  
Author(s):  
Xiaoyan Wang ◽  
Huanwen Gao ◽  
J. N. Tullberg ◽  
Hongwen Li ◽  
Nikolaus Kuhn ◽  
...  

This paper reports the outcome of 5 years of field plot runoff monitoring, 2 years of water erosion measurement, and a rainfall simulation experiment on moderately sloping farmland on the loess plateau of north-west China. The objective was to test different conservation tillage systems compared with the control treatment, conventional mouldboard plough practice (CK). Tillage, residue cover, and compaction effects were assessed in terms of runoff and soil erosion. Results from the runoff plots showed that conservation tillage, with more residue cover, less compaction, and less soil disturbance, could substantially reduce runoff and soil erosion compared with the control. No tillage with residue cover and no compaction produced the least runoff and soil erosion. Compared with the control, it reduced runoff and soil erosion by about 40% and 80%, respectively. At the start of the experiment, residue cover appeared to be the most important factor affecting soil and water conservation, particularly when antecedent soil moisture was limited. With the accumulation of tractor wheeling effects over the course of the experiment, soil compaction appeared to become a more important factor affecting runoff. Rainfall simulation was then used to assess the effect of non-inverting surface tillage and different levels of residue cover and wheel compaction on infiltration and runoff. This confirmed that wheel compaction effects could be greater than those of tillage and residue cover, at least under the 82.5 mm/h rainfall rate produced by the simulator. The wheeling effect was particularly large when the treatment was applied to wet soil, and severe even after wheeling by small tractors.


2021 ◽  
Vol 13 (5) ◽  
pp. 1021
Author(s):  
Hu Ding ◽  
Jiaming Na ◽  
Shangjing Jiang ◽  
Jie Zhu ◽  
Kai Liu ◽  
...  

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.


Sign in / Sign up

Export Citation Format

Share Document