rainfall simulation
Recently Published Documents


TOTAL DOCUMENTS

427
(FIVE YEARS 118)

H-INDEX

39
(FIVE YEARS 6)

2022 ◽  
Vol 85 ◽  
pp. 193-204
Author(s):  
N Shahraki ◽  
S Marofi ◽  
S Ghazanfari

Prediction of the occurrence or non-occurrence of daily rainfall plays a significant role in agricultural planning and water resource management projects. In this study, gamma distribution function (GDF), kernel, and exponential (EXP) distributions were coupled (piecewise) with a generalized Pareto distribution. Thus, the gamma-generalized Pareto (GGP), kernel-generalized Pareto (KGP), and exponential-generalized Pareto (EGP) models were used. The aim of the present study was to introduce new methods to modify the simulated generation of extreme rainfall amounts of rainy seasons based on the preserved spatial correlation. The best approach was identified using the normalized root mean square error (NRMSE) criterion. For this purpose, the 30-yr daily rainfall datasets of 21 synoptic weather stations located in different climates of West Iran were analyzed. The first, second, and third-order Markov chain (MC) models were used to describe rainfall time series frequencies. The best MC model order was detected using the Akaike information criterion and Bayesian information criterion. Based on the best identified MC model order, the best piecewise distribution models, and the Wilks approach, rainfall events were modeled with regard to the spatial correlation among the study stations. The performance of the Wilks approach was verified using the coefficient of determination. The daily rainfall simulation resulted in a good agreement between the observed and the generated rainfall data. Hence, the proposed approach is capable of helping water resource managers in different contexts of agricultural planning.


Author(s):  
Artemi Cerdà ◽  
Iván Franch-Pardo ◽  
Agata Novara ◽  
Srikanta Sannigrahi ◽  
Jesús Rodrigo-Comino

AbstractThe main goal of this research was to conduct a biophysical, economic, social, and perception-based approach to foresee the solutions that could be used to mitigate the soil loss problem cost-effectively in “La Ribera del Xúquer” district (Valencia Region, Spain). To achieve these goals, a farmer perception survey was carried out, and an assessment of the biophysical impact of catch crops on soil organic matter, bulk density, steady-state infiltration rate (double-ring infiltrometer) and runoff generation, and soil erosion (rainfall simulation experiments) was carried out in 2016. For the biophysical approach, two paired plots, i.e., catch crops vs. glyphosate herbicide treatment (in advance, control plot), were selected under clementine citrus production. The results show that soil organic matter increased from 1.14 to 1.63%, and bulk density decreased from 1.47 to 1.27 g cm−3 after 10 years of treatments using catch crops. They also facilitated higher infiltration rates from 16.7 to 171 mm h−1 and a delay in runoff generation from 149 to 654 s for control and catch crop plots. Both runoff rates (from 50.6 to 3.1%) and soil erosion (from 3.9 to 0.04 Mg ha−1 h−1) were reduced once the catch crops were deployed in the field. After surveying (2018–2019), farmers stated the use of catch crops as a speck of dirt and a cause of possible loss of reputation when used. Moreover, farmers (N = 73) would accept the catch crops as an effective nature-based alternative only if a subsidy of 131.17€ ha−1 would be paid. The survey results also demonstrated that the farmers' community would see catch crop more as a benefit for the planet's health and society. Few constraints, such as ageing of the farmers’ population, lack of education and negative perception for other management factors, are the critical detrimental factors for adopting catch crops as a nature-based solution to reduce soil and water losses. There is a need for an effective agrarian extension service to change the fate of the current agriculture and achieve sustainability by adopting new management strategies in contemporary agricultural practices.


2021 ◽  
Author(s):  
Mariana Marchioni ◽  
Roberto Fedele ◽  
Anita Raimondi ◽  
John Sansalone ◽  
Gianfranco Becciu

Abstract Permeable asphalt (PA) is a composite material with an open graded mix design that provides a pore structure facilitating stormwater infiltration. PA is often used as a wearing course for permeable pavements and on roadways to reduce aquaplaning and noise pollution. The pore structure functions as a filter promoting particulate matter (PM) separation. The infiltrating flow characteristics are predominately dependent on pore diameter and pore interconnectivity. X-Ray microTomography (XRT) has been successfully used to estimate these parameters that are otherwise difficult to obtain through conventional gravimetric methods. The pore structure parameters allow modeling of hydraulic conductivity (k) and filtration mechanisms; required to examine the material behavior for infiltration and PM separation. Pore structure parameters were determined through XTR for three PA mixtures. The Kozeny-Kovàv model was implemented to estimate k. PM separation was tested using a pore-to-PM diameter categorical model. This filtration mechanism model was validated with data using rainfall simulation. The filtration model provided a good correlation between measured and modeled data. The identification of filtration mechanisms and k facilitate the design and evaluation of permeable pavement systems as a best management practice (BMP) for runoff volume and flow as well as PM and PM-partitioned chemical separation.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3453
Author(s):  
Tianyu Sun ◽  
Longzhou Deng ◽  
Kai Fei ◽  
Xiaojuan Fan ◽  
Liping Zhang ◽  
...  

Soils developed from the parent materials of highly weathered granite are particularly susceptible to soil erosion. Therefore, it is of great significance to conduct in-depth research on runoff characteristics and soil loss mechanisms in weathered granite areas. Using the weathered granite area in the hilly region of southeastern China as the research object, we conducted indoor artificial rainfall simulation experiments involving three slope steepnesses (SSs), 8°, 15°, and 25°, and five rainfall intensities (RIs), 0.5, 1.0, 1.5, 2.0, and 2.5 mm/min. The results showed that sediment load (SL) has positively linear relationships with mean runoff velocity (V), Reynolds number (Re), Froude number (Fr), shear stress (τ), and stream power (w). The eroded sediment was principally composed of silt and clay that accounted for 65.41–73.41% of the total SL. There was a boundary point at 0.02 mm for the particle size distribution (PSD) of the eroded sediment. The enrichment ratio (Er) of sand-grained particles (0.02–2 mm) ranged from approximately 0.45 to 0.65, while the Er of fine-grained particles (<0.02 mm) ranged from approximately 1.37 to 1.80. These results increase our understanding of the relationships among RI, SS, runoff, and soil losses from weathered granite hillslopes, particularly the relationships between different hydraulic parameters and sediment size characteristics.


Jalawaayu ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 1-19
Author(s):  
Muhammad Tanjilur Rahman ◽  
Md. Nazmul Ahasan ◽  
Md. Abdul Mannan ◽  
Madan Sigdel ◽  
Dibas Shrestha ◽  
...  

Regional climate model is a scientific tool to monitor present climate change and to provide reliable estimation of future climate projection. In this study, the Regional Climate Model version 4.7 (RegCM4.7) developed by International Centre for Theoretical Physics (ICTP) has been adopted to simulate rainfall scenario of Bangladesh. The study examines model performance of rainfall simulation through the period of 1991-2018 with ERA-Interim75 data of 75 km horizontal resolution as lateral boundaries, downscaled at 25km resolution using the mixed convective precipitation scheme; MIT-Emanuel scheme over land and Grell scheme with Fritsch-Chappell closure over ocean. The simulated rainfall has been compared both at spatial and temporal scales (monthly, seasonal and annual) with observed data collected from Bangladesh Meteorological Department (BMD) and Climate Research Unit (CRU). Simulated annual rainfall showed that the model overestimated in most of the years. Overestimation has been observed in the monsoon and underestimation in pre-monsoon and post-monsoon seasons. Spatial distribution of simulated rainfall depicts overestimation in the southeast coastal region and underestimation in the northwest and northeast border regions of Bangladesh. Better estimation of rainfall has been found in the central and eastern parts of the country. The simulated annual rainfall has been validated through the Linear Scaling bias correction method for the years of 2016, 2017, and 2018 considering the rainfall of 1991-2015 as reference. The bias correction with linear scaling method gives fairly satisfactory results and it can be considered in the future projection of rainfall over Bangladesh.


2021 ◽  
Vol 930 (1) ◽  
pp. 012040
Author(s):  
G A P Eryani ◽  
I M S Amerta ◽  
M W Jayantari

Abstract In water resource planning, information on water availability is needed. Nowadays, data on water availability is still difficult to obtain. With technology in the form of a rainfall-runoff simulation model that can predict water availability in the Unda watershed. It can add information about the potential for water in the Unda watershed. It can be used to prepare water resources management in the Unda watershed so that the existing potential can be used sustainably. Based on the rainfall simulation model results in the Unda watershed, it can be concluded that after running the initial model and calibration. The results are obtained R2 value was 0.68 and increased by 9.81% to 0.754. Both the initial model and the calibration model show an efficient R2 value, NASH value increases by 49.93% to 0.713, which includes satisfactory criteria, RMSE value of 1.135 and decreased by 49.47% to 0.758, and the PBIAS value was 44.70% which was classified as unsatisfactory and decreased from 80.24% to 24.80% at the time of calibration which was classified as satisfactory. In general, the overall simulation results are quite good for representing the watershed’s efficient hydrological process.


2021 ◽  
Vol 930 (1) ◽  
pp. 012051
Author(s):  
M Kencanawati ◽  
N Anwar ◽  
M A Maulana

Abstract The rational method was a simple technique for estimating the design discharge of a small watershed and can be used in a probabilistic approach. The main parameter in the rational method formula was the C coefficient. The rational method was the primary method for determining the peak discharge from surface runoff flow. At the end of the dry season and the beginning of the rainy season, it placed an automatic water level recorder and automatic rain gauges for the initial water level. This field research aimed to correct a simple hydrological formulation with field measurements and build a numerical rainfall modelling based on rainfall simulation, infiltration, land use, and flow parameters according to the relationship model of precipitation. The hypothesis in this study, the basic formulation of hydrology, is simple: it requires experience to fit the theoretical hydrological formula so simply (simplicity). The theory needs to be simplified because it is an experience of field necessary to explain.


Earth ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 746-763
Author(s):  
Modeste Meliho ◽  
Abdellatif Khattabi ◽  
Asmae Nouira ◽  
Collins Ashianga Orlando

Terraced farming play several roles, from improving ecosystem services to enhancing associated population livelihoods. In this study, we were interested in evaluating the roles of mountain terraces in controlling floods and erosion risks, in particular in the Ourika watershed, located in the High Atlas mountains of Morocco. Rainfall simulation tests were conducted to measure infiltration, runoff and initial abstraction, while the Cesium-137 isotope technique was used to quantify soil loss. The results highlighted high infiltration for dense forests (78.00 ± 2.65 mm/h) and low for rangelands (27.12 ± 2.82 mm/h). For terraces, infiltration was found to be about 70.36 ± 0.56 mm/h, confirming the role of terraces in promoting infiltration. The runoff coefficient obtained was lowest for dense forests, followed by cultivated terraces, and highest for rangelands (62.71 ± 3.51). Thus, outside dense forests, infiltration and runoff were significantly very high and low, respectively, for agricultural terraces compared to other land use. The assessment of soil erosion rates showed a significant soil loss for rangelands compared to the agricultural terraces, further underlining the role of terraces in soil conservation. Terraces in the Ourika watershed, by increasing water infiltration, reduce the rate of surface runoff, and consequently, flood risks and soil degradation.


CATENA ◽  
2021 ◽  
Vol 205 ◽  
pp. 105472
Author(s):  
Zongping Ren ◽  
Xing Zhang ◽  
Xun-chang (John) Zhang ◽  
Zhanbin Li ◽  
Peng Li ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document