Quasi-3D mapping of soil moisture in agricultural fields using electrical conductivity sensing

2022 ◽  
Vol 259 ◽  
pp. 107246
Author(s):  
Hira Shaukat ◽  
Ken C. Flower ◽  
Matthias Leopold
2021 ◽  
Vol 261 ◽  
pp. 112485
Author(s):  
Hongtao Shi ◽  
Lingli Zhao ◽  
Jie Yang ◽  
Juan M. Lopez-Sanchez ◽  
Jinqi Zhao ◽  
...  

2021 ◽  
Vol 64 (1) ◽  
pp. 287-298
Author(s):  
Ruixiu Sui ◽  
Jonnie Baggard

HighlightsWe developed and evaluated a variable-rate irrigation (VRI) management method for five crop years in the Mississippi Delta.VRI management significantly reduced irrigation water use in comparison with uniform-rate irrigation (URI). There was no significant difference in grain yield and irrigation water productivity between VRI and URI management.Soil apparent electrical conductivity (ECa) was used to delineate irrigation management zones and generate VRI prescriptions.Sensor-measured soil water content was used in irrigation scheduling.Abstract. Variable-rate irrigation (VRI) allows producers to site-specifically apply irrigation water at variable rates within a field to account for the temporal and spatial variability in soil and plant characteristics. Developing practical VRI methods and documenting the benefits of VRI application are critical to accelerate the adoption of VRI technologies. Using apparent soil electrical conductivity (ECa) and soil moisture sensors, a VRI method was developed and evaluated with corn and soybean for five crop years in the Mississippi Delta. Soil ECa of the study fields was mapped and used to delineate VRI management zones and create VRI prescriptions. Irrigation was scheduled using soil volumetric water content measured by soil moisture sensors. A center pivot VRI system was employed to deliver irrigation water according to the VRI prescription. Grain yield, irrigation water use, and irrigation water productivity in the VRI treatment were determined and compared with that in a uniform-rate irrigation (URI) treatment. Results showed that the grain yield and irrigation water productivity between the VRI and URI treatments were not statistically different with both corn and soybean crops. The VRI management significantly reduced the amount of irrigation water by 22% in corn and by 11% in soybean (p = 0.05). Adoption of VRI management could improve irrigation water use efficiency in the Mississippi Delta. Keywords: Soil electrical conductivity, Soil moisture sensor, Variable rate irrigation, Water management.


Irriga ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 1-15
Author(s):  
Iug Lopes ◽  
Abelardo A. A. Montenegro

SPACE DEPENDENCE OF SOIL MOISTURE AND SOIL ELECTRICAL CONDUCTIVITY IN ALUVIAL REGION1     IUG LOPES2 E ABELARDO ANTONIO DE ASSUNÇÃO MONTENEGRO3   1Paper extracted from the doctoral thesis of the first author. 2Department of Agronomy, Instituto Federal de Educação, Ciência e Tecnologia Baiano, BR 349, Km 14 - Zona Rural, CEP: 47600-000, Bom Jesus da Lapa - BA, Brazil; [email protected] - ORCID: 0000-0003-0592-4774. 3Department of Agricultural Engineering, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, Dois Irmão, CEP: 52171-900, Recife - PE, Brazil; [email protected] -ORCID: 0000-0002-5746-8574.     1 ABSTRACT   Spatial information on soil characteristics is essential to proper decision-making regarding to the environment and land use management. The objective of this work was the investigation of cross - variance between soil moisture and apparent soil electrical conductivity (CEa), under different land uses in an alluvial valley of Pernambuco. The study was developed at the Advanced Research Unit of Universidade Federal Rural de Pernambuco (UFRPE), located at  Brígida River Basin, municipality of Panamirim-PE. Soil samples were collected in a regular mesh of 20 x 10 m, for soil moisture by gravimetric method and, following a regular 10 x 10 m mesh, CEa measurements were performed using EM38® device. Cross-semivariograms were assessed and spatial dependence was verified by geostatistical procedures. It was verified in geostatistical procedures  low variation for soil moisture and intermediate variation for CEa. The use of geostatistics allowed identification of covariance between soil moisture and ECa, as well as spatial dependence for both variables, for agricultural areas. It was verified that soil moisture, even at levels close to residual, constitutes a relevant secondary component for increasing soil salinity maps precision, and hence to precision agriculture.   Keywords: geostatistics, semi-arid, precision agriculture     LOPES, I. E MONTENEGRO, A. A. DE A. DEPENDÊNCIA ESPACIAL DA UMIDADE DO SOLO E CONDUTIVIDADE ELÉTRICA EM REGIÃO ALUVIAL     2 RESUMO   Informações espaciais sobre as características do solo são essenciais para uma tomada de decisão adequada em relação ao meio ambiente e ao gerenciamento do uso do solo. O objetivo deste trabalho foi investigar a variância cruzada entre a umidade do solo e a condutividade elétrica aparente do solo (CEa), sob diferentes usos do solo em um vale aluvial de Pernambuco. O estudo foi desenvolvido na Unidade de Pesquisa Avançada da Universidade Federal Rural de Pernambuco (UFRPE), localizada na bacia do rio Brígida, município de Panamirim-PE. As amostras de solo foram coletadas em uma malha regular de 20 x 10 m, para a umidade do solo pelo método gravimétrico e, seguindo uma malha regular de 10 x 10 m, as medidas de CEa foram realizadas usando o dispositivo EM38®. Os semivariogramas cruzados foram avaliados e a dependência espacial foi verificada por procedimentos geoestatísticos. Verificou-se procedimentos geoestatísticos, uma baixa variação da umidade do solo e variação intermediária para CEa. O uso da geoestatística permitiu identificar a covariância entre a umidade do solo e o CEa, bem como a dependência espacial para ambas as variáveis, para as áreas agrícolas. Verificou-se que a umidade do solo, mesmo em níveis próximos ao residual, constitui um componente secundário relevante para o aumento da precisão do mapeamento da salinidade do solo e, consequentemente, para a agricultura de precisão.   Palavras-chave: geoestatística, semiárido, agricultura de precisão


2021 ◽  
Vol 15 (03) ◽  
Author(s):  
Zeinab Akhavan ◽  
Mahdi Hasanlou ◽  
Mehdi Hosseini ◽  
Inbal Becker-Reshef

2020 ◽  
Vol 96 (5) ◽  
Author(s):  
Xiaoliang Jiang ◽  
Wenzhi Liu ◽  
Lunguang Yao ◽  
Guihua Liu ◽  
Yuyi Yang

ABSTRACT The relative importance of local environments and dispersal limitation in shaping denitrifier community structure remains elusive. Here, we collected soils from 36 riverine, lacustrine and palustrine wetland sites on the remote Tibetan Plateau and characterized the soil denitrifier communities using high-throughput amplicon sequencing of the nirS and nirK genes. Results showed that the richness of nirS-type denitrifiers in riverine wetlands was significantly higher than that in lacustrine wetlands but not significantly different from that in palustrine wetlands. There was no clear distinction in nir community composition among the three kinds of wetlands. Irrespective of wetland type, the soil denitrification rate was positively related to the abundance, but not the α-diversity, of denitrifying communities. Soil moisture, carbon availability and soil temperature were the main determinants of diversity [operational taxonomic unit (OTU) number] and abundance of thenirS-type denitrifier community, while water total organic carbon, soil NO3– and soil moisture were important in controlling nirK-type denitrifier diversity and abundance. The nirS community composition was influenced by water electrical conductivity, soil temperature and water depth, while the nirK community composition was affected by soil electrical conductivity. Spatial distance explained more variation in the nirS community composition than in the nirK community composition. Our findings highlight the importance of both environmental filtering and spatial distance in explaining diversity and biogeography of soil nir communities in remote and relatively undisturbed wetlands.


Sign in / Sign up

Export Citation Format

Share Document