Development and Evaluation of a Variable-Rate Irrigation Management Method in the Mississippi Delta

2021 ◽  
Vol 64 (1) ◽  
pp. 287-298
Author(s):  
Ruixiu Sui ◽  
Jonnie Baggard

HighlightsWe developed and evaluated a variable-rate irrigation (VRI) management method for five crop years in the Mississippi Delta.VRI management significantly reduced irrigation water use in comparison with uniform-rate irrigation (URI). There was no significant difference in grain yield and irrigation water productivity between VRI and URI management.Soil apparent electrical conductivity (ECa) was used to delineate irrigation management zones and generate VRI prescriptions.Sensor-measured soil water content was used in irrigation scheduling.Abstract. Variable-rate irrigation (VRI) allows producers to site-specifically apply irrigation water at variable rates within a field to account for the temporal and spatial variability in soil and plant characteristics. Developing practical VRI methods and documenting the benefits of VRI application are critical to accelerate the adoption of VRI technologies. Using apparent soil electrical conductivity (ECa) and soil moisture sensors, a VRI method was developed and evaluated with corn and soybean for five crop years in the Mississippi Delta. Soil ECa of the study fields was mapped and used to delineate VRI management zones and create VRI prescriptions. Irrigation was scheduled using soil volumetric water content measured by soil moisture sensors. A center pivot VRI system was employed to deliver irrigation water according to the VRI prescription. Grain yield, irrigation water use, and irrigation water productivity in the VRI treatment were determined and compared with that in a uniform-rate irrigation (URI) treatment. Results showed that the grain yield and irrigation water productivity between the VRI and URI treatments were not statistically different with both corn and soybean crops. The VRI management significantly reduced the amount of irrigation water by 22% in corn and by 11% in soybean (p = 0.05). Adoption of VRI management could improve irrigation water use efficiency in the Mississippi Delta. Keywords: Soil electrical conductivity, Soil moisture sensor, Variable rate irrigation, Water management.

2020 ◽  
Vol 63 (5) ◽  
pp. 1207-1215
Author(s):  
Ruixiu Sui ◽  
Susan A. O’Shaughnessy ◽  
Steven R. Evett ◽  
Alejandro Andrade-Rodriguez ◽  
Jonnie Baggard

HighlightsAn Irrigation Scheduling Supervisory Control and Data Acquisition (ISSCADA) system was tested against a soil electrical conductivity (EC) based method for variable-rate irrigation (VRI).Soil EC was used to create irrigation prescription in EC-based VRI.ISSCADA generated VRI prescriptions using canopy temperature, soil water content, and weather data.ISSCADA-based VRI reduced irrigation water use and increased irrigation water productivity.Abstract. Use of variable-rate irrigation (VRI) technology has the potential to improve irrigation water use efficiency (IWUE). VRI hardware is commercially available and can be implemented in any center pivot or lateral move irrigation system. However, practical methods and algorithms for creating VRI prescriptions have become the bottleneck in accelerating the adoption of VRI. An Irrigation Scheduling Supervisory Control and Data Acquisition (ISSCADA) system for VRI was evaluated for two years in a humid region in the Mississippi Delta. The ISSCADA system was used to manage irrigation of soybeans for two seasons. In field practice, the ISSCADA system scanned the field for canopy temperature and collected soil water data from time domain reflectometers and weather data from a nearby weather station. The ISSCADA system automatically generated VRI prescription maps. The maps were modified to include plots managed using soil electrical conductivity (EC) based VRI prescriptions. Test results indicated that there was no difference in crop yield between EC-based VRI and ISSCADA-based VRI management. However, ISSCADA-based VRI management reduced irrigation water use and increased irrigation water productivity in comparison with EC-based VRI. There is great potential for the use of ISSCADA for VRI in humid regions. Keywords: Canopy temperature, Soil electrical conductivity, Soil moisture sensor, Soil water sensor, Soybean, Variable rate irrigation.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 888 ◽  
Author(s):  
Christoph Studer ◽  
Simon Spoehel

Appropriate irrigation scheduling for efficient water use is often a challenge for small-scale farmers using drip irrigation. In a trial with 12 farmers in Sébaco, Nicaragua, two tools to facilitate irrigation scheduling were tested: the Water Chart (a table indicating required irrigation doses) and tensiometers. The study aimed at evaluating if and to what extent simple tools can reduce irrigation water use and improve water productivity in drip-irrigated vegetable (beetroot; Beta vulgaris L.) production compared with the farmers’ usual practice. Irrigation water use was substantially reduced (around 20%) when farmers irrigated according to the tools. However, farmers did not fully adhere to the tool guidance, probably because they feared that their crop would not get sufficient water. Thus they still over-irrigated their crop: between 38% and 88% more water than recommended was used during the treatment period, resulting in 91% to 139% higher water use than required over the entire growing cycle. Water productivity of beetroot production was, therefore, much lower (around 3 kg/m3) than what can be achieved under comparable conditions, although yields were decent. Differences in crop yield and water productivity among treatments were not significant. The simplified Water Chart was not sufficiently understandable to farmers (and technicians), whereas tensiometers were better perceived, although they do not provide any indication on how much water to apply. We conclude that innovations such as drip irrigation or improved irrigation scheduling have to be appropriately introduced, e.g., by taking sufficient time to co-produce a common understanding about the technologies and their possible usefulness, and by ensuring adequate follow-up support.


2020 ◽  
Vol 63 (3) ◽  
pp. 703-729 ◽  
Author(s):  
Steven R. Evett ◽  
Paul D. Colaizzi ◽  
Freddie R. Lamm ◽  
Susan A. O’Shaughnessy ◽  
Derek M. Heeren ◽  
...  

Highlights Irrigation is key to the productivity of Great Plains agriculture but is threatened by water scarcity. The irrigated area grew to >9 million ha since 1870, mostly since 1950, but is likely to decline. Changes in climate, water availability, irrigated area, and policy will affect productivity. Adaptation and innovation, hallmarks of Great Plains populations, will ensure future success. Abstract. Motivated by the need for sustainable water management and technology for next-generation crop production, the future of irrigation on the U.S. Great Plains was examined through the lenses of past changes in water supply, historical changes in irrigated area, and innovations in irrigation technology, management, and agronomy. We analyzed the history of irrigated agriculture through the 1900s to the present day. We focused particularly on the efficiency and water productivity of irrigation systems (application efficiency, crop water productivity, and irrigation water use productivity) as a connection between water resource management and agricultural production. Technology innovations have greatly increased the efficiency of water application, the productivity of water use, and the agricultural productivity of the Great Plains. We also examined the changes in water stored in the High Plains aquifer, which is the region’s principle supply for irrigation water. Relative to other states, the aquifer has been less impacted in Nebraska, despite large increases in irrigated area. Greatly increased irrigation efficiency has played a role in this, but so have regulations and the recharge to the aquifer from the Nebraska Sand Hills and from rivers crossing the state. The outlook for irrigation is less positive in western Kansas, eastern Colorado, and the Oklahoma and Texas Panhandles. The aquifer in these regions is recharged at rates much less than current pumping, and the aquifer is declining as a result. Improvements in irrigation technology and management plus changes in crops grown have made irrigation ever more efficient and allowed irrigation to continue. There is good reason to expect that future research and development efforts by federal and state researchers, extension specialists, and industry, often in concert, will continue to improve the efficiency and productivity of irrigated agriculture. Public policy changes will also play a role in regulating consumption and motivating on-farm efficiency improvements. Water supplies, while finite, will be stretched much further than projected by some who look only at past rates of consumption. Thus, irrigation will continue to be important economically for an extended period. Sustaining irrigation is crucial to sustained productivity of the Great Plains “bread basket” because on average irrigation doubles the efficiency with which water is turned into crop yields compared with what can be attained in this region with precipitation alone. Lessons learned from the Great Plains are relevant to irrigation in semi-arid and subhumid areas worldwide. Keywords: Center pivot, Crop water productivity, History, Sprinkler irrigation, Subsurface drip irrigation, Water use efficiency.


2018 ◽  
Author(s):  
Felix Zaussinger ◽  
Wouter Dorigo ◽  
Alexander Gruber ◽  
Angelica Tarpanelli ◽  
Paolo Filippucci ◽  
...  

Abstract. Effective agricultural water management requires accurate and timely information on the availability and use of irrigation water. However, most existing information on irrigation water use (IWU) lacks the objectivity and spatio-temporal representativeness needed for operational water management and meaningful characterisation of land-climate interactions. Although optical remote sensing has been used to map the area affected by irrigation, it does not physically allow for the estimation of the actual amount of irrigation water applied. On the other hand, microwave observations of the moisture content in the top soil layer are directly influenced by agricultural irrigation practices, and thus potentially allow for the quantitative estimation of IWU. In this study, we combine surface soil moisture retrievals from the spaceborne SMAP, AMSR2, and ASCAT microwave sensors with modelled soil moisture from MERRA-2 reanalysis to derive monthly IWU dynamics over the contiguous United States (CONUS) for the period 2013–2016. The methodology is driven by the assumption that the hydrology formulation of the MERRA-2 model does not account for irrigation, while the remotely sensed soil moisture retrievals do contain an irrigation signal. For many CONUS irrigation hot spots, the estimated spatial irrigation patterns show good agreement with a reference data set on irrigated areas. Moreover, in intensively irrigated areas, the temporal dynamics of observed IWU is meaningful with respect to ancillary data on local irrigation practices. State-aggregated mean IWU volumes derived from the combination of SMAP and MERRA-2 soil moisture show a good correlation with statistically reported state-level irrigation water withdrawals but systematically underestimate them. We argue that this discrepancy can be mainly attributed to the coarse spatial resolution of the employed satellite soil moisture retrievals, which fails to resolve local irrigation practices. Consequently, higher resolution soil moisture data are needed to further enhance the accuracy of IWU mapping.


2019 ◽  
Vol 23 (2) ◽  
pp. 897-923 ◽  
Author(s):  
Felix Zaussinger ◽  
Wouter Dorigo ◽  
Alexander Gruber ◽  
Angelica Tarpanelli ◽  
Paolo Filippucci ◽  
...  

Abstract. Effective agricultural water management requires accurate and timely information on the availability and use of irrigation water. However, most existing information on irrigation water use (IWU) lacks the objectivity and spatiotemporal representativeness needed for operational water management and meaningful characterization of land–climate interactions. Although optical remote sensing has been used to map the area affected by irrigation, it does not physically allow for the estimation of the actual amount of irrigation water applied. On the other hand, microwave observations of the moisture content in the top soil layer are directly influenced by agricultural irrigation practices and thus potentially allow for the quantitative estimation of IWU. In this study, we combine surface soil moisture (SM) retrievals from the spaceborne SMAP, AMSR2 and ASCAT microwave sensors with modeled soil moisture from MERRA-2 reanalysis to derive monthly IWU dynamics over the contiguous United States (CONUS) for the period 2013–2016. The methodology is driven by the assumption that the hydrology formulation of the MERRA-2 model does not account for irrigation, while the remotely sensed soil moisture retrievals do contain an irrigation signal. For many CONUS irrigation hot spots, the estimated spatial irrigation patterns show good agreement with a reference data set on irrigated areas. Moreover, in intensively irrigated areas, the temporal dynamics of observed IWU is meaningful with respect to ancillary data on local irrigation practices. State-aggregated mean IWU volumes derived from the combination of SMAP and MERRA-2 soil moisture show a good correlation with statistically reported state-level irrigation water withdrawals (IWW) but systematically underestimate them. We argue that this discrepancy can be mainly attributed to the coarse spatial resolution of the employed satellite soil moisture retrievals, which fails to resolve local irrigation practices. Consequently, higher-resolution soil moisture data are needed to further enhance the accuracy of IWU mapping.


2016 ◽  
Vol 8 (3) ◽  
pp. 112 ◽  
Author(s):  
David K. Rop ◽  
Emmanuel C. Kipkorir ◽  
John K. Taragon

<p>The broad objective of this study was to test Deficit Irrigation (DI) as an appropriate irrigation management strategy to improve crop water productivity and give optimum onion crop yield. A field trial was conducted with drip irrigation system of six irrigation treatments replicated three times in a randomized complete block design. The crop was subjected to six water stress levels 100% ETc (T100), 90% ETc (T90), 80% ETc (T80), 70% ETc (T70), 60% ETc (T60) and 50% ETc (T50) at vegetative and late season growth stages. The onion yield and quality based on physical characteristics and irrigation water use efficiency were determined. The results indicated that the variation in yield ranged from 34.4 ton/ha to 18.9 ton/ha and the bulb size ranged from 64 mm to 35 mm in diameter for T100 and T50 respectively. Irrigation water use efficiency values decreased with increasing water application level with the highest of 16.2 kg/ha/mm at T50, and the lowest being13.1 kg/ha/mm at T100. It was concluded that DI at vegetative and late growth stages influence yields in a positive linear trend with increasing quantity of irrigation water and decreasing water stress reaching optimum yield of 32.0 ton/ha at 20% water stress (T80) thereby saving 10.7% irrigation water. Onion bulb production at this level optimizes water productivity without significantly affecting yields. DI influenced the size and size distribution of fresh onion bulbs, with low size variation of the fresh bulbs at T80.</p>


2009 ◽  
Vol 60 (5) ◽  
pp. 407 ◽  
Author(s):  
A. R. Lawson ◽  
K. L. Greenwood ◽  
K. B. Kelly

The dairy industry in Victoria, Australia, uses more than half the state’s irrigation water, mainly for growing pasture. Information on the comparative water use of forage systems would be useful for dairy farmers aiming to optimise their forage production under conditions of limited water availability. However, there are few data comparing water use under similar management and weather conditions. This paper reports on an experiment which measured and compared the production, water use, and water productivity (forage removed per unit water input) of a range of 6 border-check irrigated forage systems (3 perennial, 2 annual, and a double-cropped) and 1 spray irrigated, annual forage system, used by the dairy industry in northern Victoria. Forage removal was highest from the perennial pastures, lucerne, double-cropped and Persian clover systems in both 2005 and 2006. Irrigation water inputs in 2005 were comparable with average values reported in the literature and were closely related to the length of the growing season, with around 800–850 mm used for the perennial pastures and 340–440 mm used for the border-check irrigated annual pastures. Irrigation water inputs in 2006 were substantially higher than in 2005, reflecting the drought conditions that prevailed throughout most of Victoria, with 1100–1200 mm used for the perennial species and 450–700 mm used by the border-check irrigated annual pastures. These irrigation water requirements highlight considerable year-to-year variation as low-rainfall years are usually high-evaporation years. Irrigation water productivity (WP) was greater for the annual than for the perennial systems. In 2005, irrigation WP was 30–37 kg DM/ha.mm for the annual pastures compared with 21–27 kg DM/ha.mm for the perennial and double-cropped systems. In the drier year of 2006, irrigation WP was higher for the short-season annuals than for the other forage systems. When rainfall, runoff, and changes in soil water content were included in the calculation of total WP, there were no consistent differences in the total WP of the annual and perennial systems in either year. These findings show that under conditions of limited irrigation water availability, farmers will be able to grow more forage using winter-growing annual systems than perennial systems. However, other factors such as nutritive characteristics, cost of production, and cost of transferring feed also need to be considered when deciding which forages to grow.


2016 ◽  
Vol 65 (1-2) ◽  
pp. 53-59
Author(s):  
Borivoj Pejić ◽  
Ksenija Mačkić ◽  
Srdjan Pavković ◽  
Branka Ljevnaić-Mašić ◽  
Miroljub Aksić ◽  
...  

Summary The objective of the study, conducted in Vojvodina a northern part of the Serbia Republic, was to analyse the effect of drip irrigation on yield, evapotranspiration and water productivity of watermelon (Cirullus lanatus Thunb.) grown with plasticulture. Irrigation was scheduled on the basis of water balance method. Daily evapotranspiration was computed using the reference evapotranspiration and crop coefficient. The yield of watermelon in irrigation conditions (37,28 t/ha) was significantly higher compared to non irrigated (9,98 t/ha). Water used on evapotranspiration in irrigation conditions was 398 mm and 117 mm on non irrigated variant. The crop yield response factor of 1,04 for the whole growing season reveals that relative yield decrease was nearly equal to the rate of evapotranspiration deficit. The values of irrigation water use efficiency and evapotranspiration water use efficiency were 9,93 kg/m3 and 10,29 kg/m3 respectively. The determined results could be used as a good platform for watermelon growers in the region, in terms of improvement of the optimum utilization of irrigation water.


2021 ◽  
Vol 13 (2) ◽  
pp. 677-685
Author(s):  
O. P. Singh ◽  
P. K. Singh

With the growing irrigation water scarcity, the researchers and policymakers are more concerned to improve the irrigation water use efficiency at farmers’ field level. The water-saving technologies provide greater control over water delivery to the crop root zone and reduce the non-beneficial evaporation from the crop field. Water productivity is an important concept for measuring and comparing water use efficiency. The present study tried to estimate the irrigation water use and physical water productivity of cotton under alternate furrow and drip irrigation methods in the Bhavnagar district of Gujarat. Results suggest that crop yield and physical water productivity were higher for cotton irrigated by drip method than alternate furrow method during normal rainfall and drought year. The irrigation water use under the drip method of irrigation was lower as compared to the alternate furrow method. In the case of total water (effective rainfall + irrigation water) use, per hectare crop yield and physical water productivity were higher for the drip method of irrigation than the alternate furrow method of irrigating cotton crop during normal rainfall and drought year. In the case of total water use (effective rainfall + irrigation water), it was lower for drip irrigation than the alternate furrow method of irrigating cotton crop during normal rainfall year and drought year. While estimating total water (effective rainfall + irrigation water) use, it was assumed that there is no return flow of water from the cotton field in the study area under both irrigation methods.


Sign in / Sign up

Export Citation Format

Share Document