scholarly journals The roles of environmental variation and spatial distance in explaining diversity and biogeography of soil denitrifying communities in remote Tibetan wetlands

2020 ◽  
Vol 96 (5) ◽  
Author(s):  
Xiaoliang Jiang ◽  
Wenzhi Liu ◽  
Lunguang Yao ◽  
Guihua Liu ◽  
Yuyi Yang

ABSTRACT The relative importance of local environments and dispersal limitation in shaping denitrifier community structure remains elusive. Here, we collected soils from 36 riverine, lacustrine and palustrine wetland sites on the remote Tibetan Plateau and characterized the soil denitrifier communities using high-throughput amplicon sequencing of the nirS and nirK genes. Results showed that the richness of nirS-type denitrifiers in riverine wetlands was significantly higher than that in lacustrine wetlands but not significantly different from that in palustrine wetlands. There was no clear distinction in nir community composition among the three kinds of wetlands. Irrespective of wetland type, the soil denitrification rate was positively related to the abundance, but not the α-diversity, of denitrifying communities. Soil moisture, carbon availability and soil temperature were the main determinants of diversity [operational taxonomic unit (OTU) number] and abundance of thenirS-type denitrifier community, while water total organic carbon, soil NO3– and soil moisture were important in controlling nirK-type denitrifier diversity and abundance. The nirS community composition was influenced by water electrical conductivity, soil temperature and water depth, while the nirK community composition was affected by soil electrical conductivity. Spatial distance explained more variation in the nirS community composition than in the nirK community composition. Our findings highlight the importance of both environmental filtering and spatial distance in explaining diversity and biogeography of soil nir communities in remote and relatively undisturbed wetlands.

2018 ◽  
Vol 84 (9) ◽  
Author(s):  
Claudia Tominski ◽  
Helene Heyer ◽  
Tina Lösekann-Behrens ◽  
Sebastian Behrens ◽  
Andreas Kappler

ABSTRACTMost isolated nitrate-reducing Fe(II)-oxidizing microorganisms are mixotrophic, meaning that Fe(II) is chemically oxidized by nitrite that forms during heterotrophic denitrification, and it is debated to which extent Fe(II) is enzymatically oxidized. One exception is the chemolithoautotrophic enrichment culture KS, a consortium consisting of a dominant Fe(II) oxidizer,Gallionellaceaesp., and less abundant heterotrophic strains (e.g.,Bradyrhizobiumsp.,Nocardioidessp.). Currently, this is the only nitrate-reducing Fe(II)-oxidizing culture for which autotrophic growth has been demonstrated convincingly for many transfers over more than 2 decades. We used 16S rRNA gene amplicon sequencing and physiological growth experiments to analyze the community composition and dynamics of culture KS with various electron donors and acceptors. Under autotrophic conditions, an operational taxonomic unit (OTU) related to known microaerophilic Fe(II) oxidizers within the familyGallionellaceaedominated culture KS. With acetate as an electron donor, most 16S rRNA gene sequences were affiliated withBradyrhizobiumsp.Gallionellaceaesp. not only was able to oxidize Fe(II) under autotrophic and mixotrophic conditions but also survived over several transfers of the culture on only acetate, although it then lost the ability to oxidize Fe(II).Bradyrhizobiumspp. became and remained dominant when culture KS was cultivated for only one transfer under heterotrophic conditions, even when conditions were reverted back to autotrophic in the next transfer. This study showed a dynamic microbial community in culture KS that responded to changing substrate conditions, opening up questions regarding carbon cross-feeding, metabolic flexibility of the individual strains in KS, and the mechanism of Fe(II) oxidation by a microaerophile in the absence of O2.IMPORTANCENitrate-reducing Fe(II)-oxidizing microorganisms are present in aquifers, soils, and marine and freshwater sediments. Most nitrate-reducing Fe(II) oxidizers known are mixotrophic, meaning that they need organic carbon to continuously oxidize Fe(II) and grow. In these microbes, Fe(II) was suggested to be chemically oxidized by nitrite that forms during heterotrophic denitrification, and it remains unclear whether or to what extent Fe(II) is enzymatically oxidized. In contrast, the enrichment culture KS was shown to oxidize Fe(II) autotrophically coupled to nitrate reduction. This culture contains the designated Fe(II) oxidizerGallionellaceaesp. and several heterotrophic strains (e.g.,Bradyrhizobiumsp.). We showed that culture KS is able to metabolize Fe(II) and a variety of organic substrates and is able to adapt to dynamic environmental conditions. When the community composition changed andBradyrhizobiumbecame the dominant community member, Fe(II) was still oxidized byGallionellaceaesp., even when culture KS was cultivated with acetate/nitrate [Fe(II) free] before being switched back to Fe(II)/nitrate.


1989 ◽  
Vol 69 (1) ◽  
pp. 25-32 ◽  
Author(s):  
R. C. McKENZIE ◽  
W. CHOMISTEK ◽  
N. F. CLARK

Linear equations were developed for converting electromagnetic induction readings (ECa) from EM38 meters to saturated paste electrical conductivity values (ECc). To correlate EM38 readings with measured ECe values, field sites representing a range of salinity conditions were sampled in 0.30-m increments to a depth of 1.5 m. Adapting a weighting procedure based on the EM38 meter's response to depth, ECe values were condensed into a single weighted value. The weighted ECe values were linearly correlated with temperature-corrected ECa readings. Equations were designed for soils of various textures under varying temperature and moisture conditions. For accurate ECa to ECe conversions, soil temperature correction of ECa is essential. When a frozen layer is present, EM38 readings are unreliable. EM38 horizontal and vertical modes show different ECa readings for the same depth-weighted ECe. Variability of ECa to ECe conversion was greater on coarse-textured than medium- or fine-textured soils. Available soil moisture should be above 30% for accurate ECe determinations from ECa readings. Key words: Salinity methods, soil salinity, saturated paste extract method, electromagnetic inductance meters, soil temperature


2016 ◽  
Vol 92 (7) ◽  
pp. fiw088 ◽  
Author(s):  
Mario Moreno-Pino ◽  
Rodrigo De la Iglesia ◽  
Nelson Valdivia ◽  
Carlos Henríquez-Castilo ◽  
Alexander Galán ◽  
...  

Sensors ◽  
2012 ◽  
Vol 12 (10) ◽  
pp. 13545-13566 ◽  
Author(s):  
Wojciech Skierucha ◽  
Andrzej Wilczek ◽  
Agnieszka Szypłowska ◽  
Cezary Sławiński ◽  
Krzysztof Lamorski

Author(s):  
Tamara J. H. M. van Bergen ◽  
Ana B. Rios-Miguel ◽  
Tom M. Nolte ◽  
Ad M. J. Ragas ◽  
Rosalie van Zelm ◽  
...  

Abstract Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC–MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. Key points • Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. • Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. • Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change. Graphical abstract


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 73
Author(s):  
Buhari Lawan Muhammad ◽  
Taehee Kim ◽  
Jang-Seu Ki

Biomonitoring of phytoplankton communities in freshwater ecosystems is imperative for efficient water quality management. In the present study, we present the seasonal diversity of phytoplankton from the non-reservoir area of the Han River (Korea), assessed using the 18S rRNA amplicon sequencing. Our results uncovered a considerably high eukaryotic diversity, which was predominantly represented by phytoplankton in all the seasons (38–63%). Of these, the diatoms, Cyclostephanos tholiformis, Stephanodiscus hantzschii, and Stephanodiscus sp., were frequently detected in spring and winter. Interestingly, for the first time in the Han River, we detected a large number of operational taxonomic unit (OTU) reads belonging to the naked dinoflagellate Gymnodinium sp., which dominated in autumn (15.8%) and was observed only in that season. Molecular cloning and quantitative real-time polymerase chain reaction (PCR) confirmed the presence of Gymnodinium sp. in the samples collected in 2012 and 2019. Moreover, a comparison of the present data with our previous data from a reservoir area (Paldang Dam) revealed similar patterns of phytoplankton communities. This molecular approach revealed a prospective toxic species that was not detected through microscopy. Collectively, resolving phytoplankton communities at a level relevant for water quality management will provide a valuable reference for future studies on phytoplankton for environmental monitoring.


2018 ◽  
Vol 40 (2) ◽  
pp. 153 ◽  
Author(s):  
Xuexia Wang ◽  
Yali Chen ◽  
Yulong Yan ◽  
Zhiqiang Wan ◽  
Ran Chao ◽  
...  

The response of soil respiration to simulated climatic warming and increased precipitation was evaluated on the arid–semi-arid Stipa steppe of Inner Mongolia. Soil respiration rate had a single peak during the growing season, reaching a maximum in July under all treatments. Soil temperature, soil moisture and their interaction influenced the soil respiration rate. Relative to the control, warming alone reduced the soil respiration rate by 15.6 ± 7.0%, whereas increased precipitation alone increased the soil respiration rate by 52.6 ± 42.1%. The combination of warming and increased precipitation increased the soil respiration rate by 22.4 ± 11.2%. When temperature was increased, soil respiration rate was more sensitive to soil moisture than to soil temperature, although the reverse applied when precipitation was increased. Under the experimental precipitation (20% above natural rainfall) applied in the experiment, soil moisture was the primary factor limiting soil respiration, but soil temperature may become limiting under higher soil moisture levels.


2009 ◽  
Vol 41 (9) ◽  
pp. 1857-1865 ◽  
Author(s):  
Paul Eggleton ◽  
Kelly Inward ◽  
Joanne Smith ◽  
David T. Jones ◽  
Emma Sherlock

2021 ◽  
Author(s):  
Maede Faghihinia ◽  
Yi Zou ◽  
Yongfei Bai ◽  
Martin Dudáš ◽  
Rob Marrs ◽  
...  

Abstract Arbuscular mycorrhizal fungi (AMF) are the predominant type of mycorrhizal fungi in roots and rhizosphere soil of grass species worldwide. Grasslands are currently experiencing increasing grazing pressure, but it is not yet clear how grazing intensity and host plant grazing preference by large herbivores interact with soil- and root-associated AMF communities. Here, we tested whether the diversity and community composition of AMF in the roots and rhizosphere soil of two dominant perennial grasses grazed differently by livestock change in response to grazing intensity. We conducted a study in a long-term field experiment in which seven levels of field-manipulated grazing intensities were maintained for 13 years in a typical steppe grassland in northern China. We extracted DNA from the roots and rhizosphere soil of two dominant grasses, Leymus chinense (Trin.) Tzvel. and Stipa grandis P. Smirn, with contrasting grazing preference by sheep. AMF DNA from root and soil samples were then subjected to molecular analysis. Our results showed that AMF α-diversity (richness) at the virtual taxa (VT) level varied as a function of grazing intensity. Different VTs showed completely different responses along the gradient, one increasing, one decreasing and others showing no response. Glomeraceae was the most abundant AMF family along the grazing gradient, which fits well with the theory of disturbance tolerance of this group. In addition, sheep grazing preference for host plants did not explain a considerable variation in AMF α-diversity. However, the two grass species exhibited different community composition in their roots and rhizosphere soils. Roots exhibited a lower α-diversity and higher β-diversity within the AMF community than soils. Overall, our results suggest that long-term grazing intensity might have changed the abundance of functionally-diverse AMF taxa in favor of those with disturbance-tolerant traits. We suggest our results would be useful in informing the choice of mycorrhizal fungi indicator variables when assessing the impacts of grassland management choices on grassland ecosystem functioning.


Sign in / Sign up

Export Citation Format

Share Document