scholarly journals Positivity of the second exterior power of the tangent bundles

2021 ◽  
Vol 385 ◽  
pp. 107757
Author(s):  
Kiwamu Watanabe
2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Lara B. Anderson ◽  
James Gray ◽  
Andre Lukas ◽  
Juntao Wang

Abstract The superpotential in four-dimensional heterotic effective theories contains terms arising from holomorphic Chern-Simons invariants associated to the gauge and tangent bundles of the compactification geometry. These effects are crucial for a number of key features of the theory, including vacuum stability and moduli stabilization. Despite their importance, few tools exist in the literature to compute such effects in a given heterotic vacuum. In this work we present new techniques to explicitly determine holomorphic Chern-Simons invariants in heterotic string compactifications. The key technical ingredient in our computations are real bundle morphisms between the gauge and tangent bundles. We find that there are large classes of examples, beyond the standard embedding, where the Chern-Simons superpotential vanishes. We also provide explicit examples for non-flat bundles where it is non-vanishing and non-integer quantized, generalizing previous results for Wilson lines.


Author(s):  
Ommolbanin Behzad ◽  
André Contiero ◽  
Letterio Gatto ◽  
Renato Vidal Martins

AbstractAn explicit description of the ring of the rational polynomials in r indeterminates as a representation of the Lie algebra of the endomorphisms of the k-th exterior power of a countably infinite-dimensional vector space is given. Our description is based on results by Laksov and Throup concerning the symmetric structure of the exterior power of a polynomial ring. Our results are based on approximate versions of the vertex operators occurring in the celebrated bosonic vertex representation, due to Date, Jimbo, Kashiwara and Miwa, of the Lie algebra of all matrices of infinite size, whose entries are all zero but finitely many.


2018 ◽  
Vol 61 (1) ◽  
pp. 166-173
Author(s):  
Cleto B. Miranda-Neto

AbstractIn this note we prove the following surprising characterization: if X ⊂ is an (embedded, non-empty, proper) algebraic variety deûned over a field k of characteristic zero, then X is a hypersurface if and only if the module of logarithmic vector fields of X is a reflexive -module. As a consequence of this result, we derive that if is a free -module, which is shown to be equivalent to the freeness of the t-th exterior power of for some (in fact, any) t ≤ n, then necessarily X is a Saito free divisor.


2006 ◽  
Vol 745 (3) ◽  
pp. 208-235 ◽  
Author(s):  
Masato Arai ◽  
Muneto Nitta
Keyword(s):  

Author(s):  
Zsolt Patakfalvi ◽  
Maciej Zdanowicz

AbstractWe prove that smooth, projective, K-trivial, weakly ordinary varieties over a perfect field of characteristic $$p>0$$ p > 0 are not geometrically uniruled. We also show a singular version of our theorem, which is sharp in multiple aspects. Our work, together with Langer’s results, implies that varieties of the above type have strongly semistable tangent bundles with respect to every polarization.


Sign in / Sign up

Export Citation Format

Share Document