scholarly journals Graphs determined by signless Laplacian spectra

2020 ◽  
Vol 17 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Ali Zeydi Abdian ◽  
Afshin Behmaram ◽  
Gholam Hossein Fath-Tabar
2018 ◽  
Vol 10 (02) ◽  
pp. 1850019 ◽  
Author(s):  
Ali Zeydi Abdian ◽  
S. Morteza Mirafzal

In the past decades, graphs that are determined by their spectrum have received much more and more attention, since they have been applied to several fields, such as randomized algorithms, combinatorial optimization problems and machine learning. An important part of spectral graph theory is devoted to determining whether given graphs or classes of graphs are determined by their spectra or not. So, finding and introducing any class of graphs which are determined by their spectra can be an interesting and important problem. The main aim of this study is to characterize two classes of multicone graphs which are determined by their adjacency, Laplacian and signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let [Formula: see text] denote a complete graph on [Formula: see text] vertices. In the paper, we show that multicone graphs [Formula: see text] and [Formula: see text] are determined by both their adjacency spectra and their Laplacian spectra, where [Formula: see text] and [Formula: see text] denote the Local Higman–Sims graph and the Local [Formula: see text] graph, respectively. In addition, we prove that these multicone graphs are determined by their signless Laplacian spectra.


2019 ◽  
Vol 11 (2) ◽  
pp. 407-417 ◽  
Author(s):  
S. Pirzada ◽  
H.A. Ganie ◽  
A.M. Alghamdi

For a simple graph $G(V,E)$ with $n$ vertices, $m$ edges, vertex set $V(G)=\{v_1, v_2, \dots, v_n\}$ and edge set $E(G)=\{e_1, e_2,\dots, e_m\}$, the adjacency matrix $A=(a_{ij})$ of $G$ is a $(0, 1)$-square matrix of order $n$ whose $(i,j)$-entry is equal to 1 if $v_i$ is adjacent to $v_j$ and equal to 0, otherwise. Let $D(G)={diag}(d_1, d_2, \dots, d_n)$ be the diagonal matrix associated to $G$, where $d_i=\deg(v_i),$ for all $i\in \{1,2,\dots,n\}$. The matrices $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$ are respectively called the Laplacian and the signless Laplacian matrices and their spectra (eigenvalues) are respectively called the Laplacian spectrum ($L$-spectrum) and the signless Laplacian spectrum ($Q$-spectrum) of the graph $G$. If $0=\mu_n\leq\mu_{n-1}\leq\cdots\leq\mu_1$ are the Laplacian eigenvalues of $G$, Brouwer conjectured that the sum of $k$ largest Laplacian eigenvalues $S_{k}(G)$ satisfies $S_{k}(G)=\sum\limits_{i=1}^{k}\mu_i\leq m+{k+1 \choose 2}$ and this conjecture is still open. If $q_1,q_2, \dots, q_n$ are the signless Laplacian eigenvalues of $G$, for $1\leq k\leq n$, let $S^{+}_{k}(G)=\sum_{i=1}^{k}q_i$ be the sum of $k$ largest signless Laplacian eigenvalues of $G$. Analogous to Brouwer's conjecture, Ashraf et al. conjectured that $S^{+}_{k}(G)\leq m+{k+1 \choose 2}$, for all $1\leq k\leq n$. This conjecture has been verified in affirmative for some classes of graphs. We obtain the upper bounds for $S^{+}_{k}(G)$ in terms of the clique number $\omega$, the vertex covering number $\tau$ and the diameter of the graph $G$. Finally, we show that the conjecture holds for large families of graphs.


2014 ◽  
Vol 449 ◽  
pp. 154-165 ◽  
Author(s):  
Muhuo Liu ◽  
Haiying Shan ◽  
Kinkar Ch. Das

2018 ◽  
Vol 6 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Milica Andeelić ◽  
Domingos M. Cardoso ◽  
António Pereira

Abstract A new lower bound on the largest eigenvalue of the signless Laplacian spectra for graphs with at least one (κ,τ)regular set is introduced and applied to the recognition of non-Hamiltonian graphs or graphs without a perfect matching. Furthermore, computational experiments revealed that the introduced lower bound is better than the known ones. The paper also gives sufficient condition for a graph to be non Hamiltonian (or without a perfect matching).


2018 ◽  
Vol 10 (1) ◽  
pp. 185-196 ◽  
Author(s):  
R. Sharafdini ◽  
A.Z. Abdian

Let $G$ be a simple undirected graph. Then the signless Laplacian matrix of $G$ is defined as $D_G + A_G$ in which $D_G$ and $A_G$ denote the degree matrix and the adjacency matrix of $G$, respectively. The graph $G$ is said to be determined by its signless Laplacian spectrum (DQS, for short), if any graph having the same signless Laplacian spectrum as $G$ is isomorphic to $G$. We show that $G\sqcup rK_2$ is determined by its signless Laplacian spectra under certain conditions, where $r$ and $K_2$ denote a natural number and the complete graph on two vertices, respectively. Applying these results, some DQS graphs with independent edges are obtained.


Sign in / Sign up

Export Citation Format

Share Document