A diffusive single-species model with periodic coefficients and its optimal harvesting policy

2007 ◽  
Vol 187 (2) ◽  
pp. 873-882 ◽  
Author(s):  
Ling Bai ◽  
Ke Wang
2002 ◽  
Vol 10 (01) ◽  
pp. 1-13 ◽  
Author(s):  
BALRAM DUBEY ◽  
PEEYUSH CHANDRA ◽  
PRAWAL SINHA

A dynamic model for a single-species fishery, which depends partially on a logistically growing resource with functional response, is proposed using taxation as control instrument to protect fish population from overexploitation. The analysis of the model shows that both the equilibrium density of fish population as well as the maximum sustainable yield increase as resource biomass density increases. The optimal harvesting policy is also discussed with the help of Pontryagin's Maximum Principle. It is found that for the optimum equilibrium value of resource biomass density, the total user's cost of harvest per unit effort must be equal to the discounted value of future price at the steady state.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Messaoud Bounkhel ◽  
Lotfi Tadj

We use nonlinear model predictive control to find the optimal harvesting effort of a renewable resource system with a nonlinear state equation that maximizes a nonlinear profit function. A solution approach is proposed and discussed and satisfactory numerical illustrations are provided.


2013 ◽  
Vol 805-806 ◽  
pp. 1957-1961
Author(s):  
Ting Wu

In this paper, a predator-prey system with functional response is studied,and a set of sufficient conditions are obtained for the stability of equilibrium point of the system. Moreover, optimal harvesting policy is obtained by using the maximal principle,and numerical simulation is applied to illustrate the correctness.


2006 ◽  
Vol 14 (02) ◽  
pp. 303-314 ◽  
Author(s):  
YUJUAN ZHANG ◽  
ZHILONG XIU ◽  
LANSUN CHEN

In this paper we investigate the optimal harvesting problems of a single species with Gompertz law of growth. Based on continuous harvesting models, we propose impulsive harvesting models with constant harvest or proportional harvest. By using the discrete dynamical systems determined by the stroboscopic map, we discuss existence, stability and global attractivity of positive periodic solutions, and obtain the maximum sustainable yield and the corresponding optimal population level. At last, we compare the maximum sustainable yield of impulsive harvest with that of continuous harvest, and point out that proportional harvest is superior to constant harvest.


Sign in / Sign up

Export Citation Format

Share Document