Solving first-order initial-value problems by using an explicit non-standard A -stable one-step method in variable step-size formulation

2015 ◽  
Vol 268 ◽  
pp. 796-805 ◽  
Author(s):  
Higinio Ramos ◽  
Gurjinder Singh ◽  
V. Kanwar ◽  
Saurabh Bhatia
Author(s):  
Nazreen Waeleh ◽  
Zanariah Abdul Majid

An alternative block method for solving fifth-order initial value problems (IVPs) is proposed with an adaptive strategy of implementing variable step size. The derived method is designed to compute four solutions simultaneously without reducing the problem to a system of first-order IVPs. To validate the proposed method, the consistency and zero stability are also discussed. The improved performance of the developed method is demonstrated by comparing it with the existing methods and the results showed that the 4-point block method is suitable for solving fifth-order IVPs.


Author(s):  
Sania Qureshi ◽  
Higinio Ramos

AbstractIn this work, we develop a nonlinear explicit method suitable for both autonomous and non-autonomous type of initial value problems in Ordinary Differential Equations (ODEs). The method is found to be third order accurate having L-stability. It is shown that if a variable step-size strategy is employed then the performance of the proposed method is further improved in comparison with other methods of same nature and order. The method is shown to be working well for initial value problems having singular solutions, singularly perturbed and stiff problems, and blow-up ODE problems, which is illustrated using a few numerical experiments.


Author(s):  
Adeniran Adebayo O. ◽  
Edaogbogun Kikelomo

This paper presents a half step numerical method for solving directly general second order initial value problems. The scheme is developed via collocation and interpolation technique invoked on power series polynomial. The proposed method is consistent, zero stable, order four and three. This method can estimate the approximate solution at both step and off step points simultaneously by using variable step size. Numerical results are given to show the efficiency of the proposed scheme over some existing schemes of same and higher order.


2015 ◽  
Vol 4 (2) ◽  
pp. 411 ◽  
Author(s):  
Oluwadare Adeniran ◽  
Babatunde Ogundare

<p>The paper presents a one step hybrid numerical scheme with two off grid points for solving directly the general second order initial value problems of ordinary differential equations. The scheme is developed using collocation and interpolation technique. The proposed scheme is consistent, zero stable and of order four. This scheme can estimate the approximate solution at both step and off step points simultaneously by using variable step size. Numerical results are given to show the efficiency of the proposed scheme over the existing schemes.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
H. Musa ◽  
M. B. Suleiman ◽  
F. Ismail ◽  
N. Senu ◽  
Z. B. Ibrahim

New implicit block formulae that compute solution of stiff initial value problems at two points simultaneously are derived and implemented in a variable step size mode. The strategy for changing the step size for optimum performance involves halving, increasing by a multiple of 1.7, or maintaining the current step size. The stability analysis of the methods indicates their suitability for solving stiff problems. Numerical results are given and compared with some existing backward differentiation formula algorithms. The results indicate an improvement in terms of accuracy.


Geophysics ◽  
1974 ◽  
Vol 39 (1) ◽  
pp. 56-68 ◽  
Author(s):  
Flavian Abramovici

The impedance tensor corresponding to the magnetotelluric field for a nonisotropic one‐dimensional structure is given in terms of the solutions of a sixth‐order differential system. The conductivity tensor is three‐dimensional. Its components depend upon depth only in an arbitrary manner such that the corresponding matrix is positive definite. The impedance tensor components are found by a numerical integration procedure based on a set of one‐step methods and a variable step‐size to insure a given accuracy in the final result. Calculations were made for three models having sharp boundaries and also transitional layers. The first of these models has a middle layer of high conductivity, sandwiched between two layers of linearly varying conductivity, while in the second model the middle layer has a very low conductivity. In the third model the conductivity tensor is three‐dimensional and is linearly varying in one of the layers.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
S. A. M. Yatim ◽  
Z. B. Ibrahim ◽  
K. I. Othman ◽  
M. B. Suleiman

We derive a variable step of the implicit block methods based on the backward differentiation formulae (BDF) for solving stiff initial value problems (IVPs). A simplified strategy in controlling the step size is proposed with the aim of optimizing the performance in terms of precision and computation time. The numerical results obtained support the enhancement of the method proposed as compared to MATLAB's suite of ordinary differential equations (ODEs) solvers, namely, ode15s and ode23s.


Sign in / Sign up

Export Citation Format

Share Document