Resonant penetrative convection in porous media with an internal heat source/sink effect

2016 ◽  
Vol 281 ◽  
pp. 323-342 ◽  
Author(s):  
Akil J. Harfash
2019 ◽  
Vol 8 (1) ◽  
pp. 546-558 ◽  
Author(s):  
Amit Mahajan ◽  
Reena Nandal

Abstract The present work involves the study of penetrative convection in an incompressible fluid-saturated porous media with local thermal non-equilibrium. The onset of convection evaluated linearly and nonlinearly for the system influenced by heat extraction and heat generation. Darcy-Brinkman law is employed to model the momentum equation and four type of internal heat generating function are considered which leads to thermo-convective instability within the fluid layer. Linear analysis carried out by using normal mode technique and nonlinear stability analysis has been done by energy method. Due to heat generation within the fluid layer and heat extraction through boundary, the subcritical instability may exist with higher possibility. Effects of various parameters as: inter-phase heat transfer parameter, Darcy-Brinkman number, porosity-modified conductivity ratio, and heat parameter are explored on Darcy-Rayleigh number by Chebyshev pseudospectral method as numerical form and graphical form.


1992 ◽  
Vol 02 (04) ◽  
pp. 407-421
Author(s):  
LORNA RICHARDSON

We investigate the stability of convection in a porous medium containing a heat source in which a destabilizing salt field and stabilizing temperature gradient are present. Both conditional and unconditional nonlinear stability thresholds are calculated and we note that RaE(conditional)>RaE(unconditional). The unconditional nonlinear analysis requires the use of a “weighted” energy.


2013 ◽  
Vol 18 (3) ◽  
pp. 739-760 ◽  
Author(s):  
M.M. Nandeppanavar ◽  
M.N. Siddalingappa ◽  
H. Jyoti

Abstract In the present paper, a viscoelastic boundary layer flow and heat transfer over an exponentially stretching continuous sheet in the presence of a heat source/sink has been examined. Loss of energy due to viscous dissipation of the non-Newtonian fluid has been taken into account in this study. Approximate analytical local similar solutions of the highly non-linear momentum equation are obtained for velocity distribution by transforming the equation into Riccati-type and then solving this sequentially. Accuracy of the zero-order analytical solutions for the stream function and velocity are verified by numerical solutions obtained by employing the Runge-Kutta fourth order method involving shooting. Similarity solutions of the temperature equation for non-isothermal boundary conditions are obtained in the form of confluent hypergeometric functions. The effect of various physical parameters on the local skin-friction coefficient and heat transfer characteristics are discussed in detail. It is seen that the rate of heat transfer from the stretching sheet to the fluid can be controlled by suitably choosing the values of the Prandtl number Pr and local Eckert number E, local viscioelastic parameter k*1 and local heat source/ sink parameter β*


2012 ◽  
Vol 23 (6) ◽  
pp. 761-775 ◽  
Author(s):  
YAN LIU

We study the structural stability of a problem in a porous medium when the density of saturating liquid is a nonlinear function of temperature and an internal heat source is present. We prove a convergence result for the Forchheimer coefficient. That is to say, when λ → 0, the solution of the non-isothermal flow in a porous medium of the Forchheimer type, see (1.1), can converge to the solution of the equivalent Darcy type.


Sign in / Sign up

Export Citation Format

Share Document