Variational integrators for forced Lagrangian systems based on the local path fitting technique

2022 ◽  
Vol 416 ◽  
pp. 126739
Author(s):  
Xinlei Kong ◽  
Zhongxin Wang ◽  
Huibin Wu
Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1488
Author(s):  
Federico Peralta ◽  
Mario Arzamendia ◽  
Derlis Gregor ◽  
Daniel G. Reina ◽  
Sergio Toral

Local path planning is important in the development of autonomous vehicles since it allows a vehicle to adapt their movements to dynamic environments, for instance, when obstacles are detected. This work presents an evaluation of the performance of different local path planning techniques for an Autonomous Surface Vehicle, using a custom-made simulator based on the open-source Robotarium framework. The conducted simulations allow to verify, compare and visualize the solutions of the different techniques. The selected techniques for evaluation include A*, Potential Fields (PF), Rapidly-Exploring Random Trees* (RRT*) and variations of the Fast Marching Method (FMM), along with a proposed new method called Updating the Fast Marching Square method (uFMS). The evaluation proposed in this work includes ways to summarize time and safety measures for local path planning techniques. The results in a Lake environment present the advantages and disadvantages of using each technique. The proposed uFMS and A* have been shown to achieve interesting performance in terms of processing time, distance travelled and security levels. Furthermore, the proposed uFMS algorithm is capable of generating smoother routes.


2021 ◽  
Vol 193 ◽  
pp. 107913
Author(s):  
Yuan Tang ◽  
Yiming Miao ◽  
Ahmed Barnawi ◽  
Bander Alzahrani ◽  
Reem Alotaibi ◽  
...  

2021 ◽  
Vol 9 (7) ◽  
pp. 761
Author(s):  
Liang Zhang ◽  
Junmin Mou ◽  
Pengfei Chen ◽  
Mengxia Li

In this research, a hybrid approach for path planning of autonomous ships that generates both global and local paths, respectively, is proposed. The global path is obtained via an improved artificial potential field (APF) method, which makes up for the shortcoming that the typical APF method easily falls into a local minimum. A modified velocity obstacle (VO) method that incorporates the closest point of approach (CPA) model and the International Regulations for Preventing Collisions at Sea (COLREGS), based on the typical VO method, can be used to get the local path. The contribution of this research is two-fold: (1) improvement of the typical APF and VO methods, making up for previous shortcomings, and integrated COLREGS rules and good seamanship, making the paths obtained more in line with navigation practice; (2) the research included global and local path planning, considering both the safety and maneuverability of the ship in the process of avoiding collision, and studied the whole process of avoiding collision in a relatively entirely way. A case study was then conducted to test the proposed approach in different situations. The results indicate that the proposed approach can find both global and local paths to avoid the target ship.


Sign in / Sign up

Export Citation Format

Share Document