scholarly journals A sufficient condition for the existence of a positive solution for a nonlinear fractional differential equation with the Riemann–Liouville derivative

2012 ◽  
Vol 25 (11) ◽  
pp. 1986-1992 ◽  
Author(s):  
Yang Liu ◽  
weiguo Zhang ◽  
Xiping Liu
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jun-Rui Yue ◽  
Jian-Ping Sun ◽  
Shuqin Zhang

We consider the following boundary value problem of nonlinear fractional differential equation:(CD0+αu)(t)=f(t,u(t)),  t∈[0,1],  u(0)=0,   u′(0)+u′′(0)=0,  u′(1)+u′′(1)=0, whereα∈(2,3]is a real number, CD0+αdenotes the standard Caputo fractional derivative, andf:[0,1]×[0,+∞)→[0,+∞)is continuous. By using the well-known Guo-Krasnoselskii fixed point theorem, we obtain the existence of at least one positive solution for the above problem.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Changyou Wang ◽  
Haiqiang Zhang ◽  
Shu Wang

This paper is concerned with a nonlinear fractional differential equation involving Caputo derivative. By constructing the upper and lower control functions of the nonlinear term without any monotone requirement and applying the method of upper and lower solutions and the Schauder fixed point theorem, the existence and uniqueness of positive solution for the initial value problem are investigated. Moreover, the existence of maximal and minimal solutions is also obtained.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ya-ling Li ◽  
Shi-you Lin

We study the following nonlinear fractional differential equation involving thep-Laplacian operatorDβφpDαut=ft,ut,1<t<e,u1=u′1=u′e=0,Dαu1=Dαue=0, where the continuous functionf:1,e×0,+∞→[0,+∞),2<α≤3,1<β≤2.Dαdenotes the standard Hadamard fractional derivative of the orderα, the constantp>1, and thep-Laplacian operatorφps=sp-2s. We show some results about the existence and the uniqueness of the positive solution by using fixed point theorems and the properties of Green's function and thep-Laplacian operator.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Mustafa Bayram ◽  
Hakan Adiguzel ◽  
Aydin Secer

AbstractIn this paper, we study the oscillation of solutions to a non-linear fractional differential equation with damping term. The fractional derivative is defined in the sense of the modified Riemann-Liouville derivative. By using a variable transformation, a generalized Riccati transformation, inequalities, and integration average techniquewe establish new oscillation criteria for the fractional differential equation. Several illustrative examples are also given.


Author(s):  
Amjad Ali ◽  
Nabeela Khan ◽  
Seema Israr

AbstractIn this article, we study a class of nonlinear fractional differential equation for the existence and uniqueness of a positive solution and the Hyers–Ulam-type stability. To proceed this work, we utilize the tools of fixed point theory and nonlinear analysis to investigate the concern theory. We convert fractional differential equation into an integral alternative form with the help of the Greens function. Using the desired function, we studied the existence of a positive solution and uniqueness for proposed class of fractional differential equation. In next section of this work, the author presents stability analysis for considered problem and developed the conditions for Ulam’s type stabilities. Furthermore, we also provided two examples to illustrate our main work.


2020 ◽  
Vol 21 (2) ◽  
pp. 427-440 ◽  
Author(s):  
Piyachat Borisut ◽  
◽  
Poom Kumam ◽  
Idris Ahmed ◽  
Kanokwan Sitthithakerngkiet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document