scholarly journals Positive Solution for the Nonlinear Hadamard Type Fractional Differential Equation withp-Laplacian

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ya-ling Li ◽  
Shi-you Lin

We study the following nonlinear fractional differential equation involving thep-Laplacian operatorDβφpDαut=ft,ut,1<t<e,u1=u′1=u′e=0,Dαu1=Dαue=0, where the continuous functionf:1,e×0,+∞→[0,+∞),2<α≤3,1<β≤2.Dαdenotes the standard Hadamard fractional derivative of the orderα, the constantp>1, and thep-Laplacian operatorφps=sp-2s. We show some results about the existence and the uniqueness of the positive solution by using fixed point theorems and the properties of Green's function and thep-Laplacian operator.

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jun-Rui Yue ◽  
Jian-Ping Sun ◽  
Shuqin Zhang

We consider the following boundary value problem of nonlinear fractional differential equation:(CD0+αu)(t)=f(t,u(t)),  t∈[0,1],  u(0)=0,   u′(0)+u′′(0)=0,  u′(1)+u′′(1)=0, whereα∈(2,3]is a real number, CD0+αdenotes the standard Caputo fractional derivative, andf:[0,1]×[0,+∞)→[0,+∞)is continuous. By using the well-known Guo-Krasnoselskii fixed point theorem, we obtain the existence of at least one positive solution for the above problem.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 832
Author(s):  
Tanzeela Kanwal ◽  
Azhar Hussain ◽  
Hamid Baghani ◽  
Manuel de la Sen

We present the notion of orthogonal F -metric spaces and prove some fixed and periodic point theorems for orthogonal ⊥ Ω -contraction. We give a nontrivial example to prove the validity of our result. Finally, as application, we prove the existence and uniqueness of the solution of a nonlinear fractional differential equation.


Author(s):  
Jinhua Wang ◽  
Hongjun Xiang ◽  
ZhiGang Liu

We consider the existence and multiplicity of concave positive solutions for boundary value problem of nonlinear fractional differential equation withp-Laplacian operatorD0+γ(ϕp(D0+αu(t)))+f(t,u(t),D0+ρu(t))=0,0<t<1,u(0)=u′(1)=0,u′′(0)=0,D0+αu(t)|t=0=0, where0<γ<1,2<α<3,0<ρ⩽1,D0+αdenotes the Caputo derivative, andf:[0,1]×[0,+∞)×R→[0,+∞)is continuous function,ϕp(s)=|s|p-2s,p>1,  (ϕp)-1=ϕq,  1/p+1/q=1. By using fixed point theorem, the results for existence and multiplicity of concave positive solutions to the above boundary value problem are obtained. Finally, an example is given to show the effectiveness of our works.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Jamilu Abubakar ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet

Abstract This study investigates the solutions of an impulsive fractional differential equation incorporated with a pantograph. This work extends and improves some results of the impulsive fractional differential equation. A differential equation of an impulsive fractional pantograph with a more general anti-periodic boundary condition is proposed. By employing the well-known fixed point theorems of Banach and Krasnoselskii, the existence and uniqueness of the solution of the proposed problem are established. Furthermore, two examples are presented to support our theoretical analysis.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Changyou Wang ◽  
Haiqiang Zhang ◽  
Shu Wang

This paper is concerned with a nonlinear fractional differential equation involving Caputo derivative. By constructing the upper and lower control functions of the nonlinear term without any monotone requirement and applying the method of upper and lower solutions and the Schauder fixed point theorem, the existence and uniqueness of positive solution for the initial value problem are investigated. Moreover, the existence of maximal and minimal solutions is also obtained.


2019 ◽  
Vol 13 (05) ◽  
pp. 2050089 ◽  
Author(s):  
S. Nageswara Rao ◽  
Meshari Alesemi

In this paper, we establish sufficient conditions for the existence of positive solutions for a system of nonlinear fractional [Formula: see text]-Laplacian boundary value problems under different combinations of superlinearity and sublinearity of the nonlinearities via the Guo–Krasnosel’skii fixed point theorem. Moreover, an example is given to illustrate our results.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2231
Author(s):  
Vasily E. Tarasov

In this paper, we consider a nonlinear fractional differential equation. This equation takes the form of the Bernoulli differential equation, where we use the Caputo fractional derivative of non-integer order instead of the first-order derivative. The paper proposes an exact solution for this equation, in which coefficients are power law functions. We also give conditions for the existence of the exact solution for this non-linear fractional differential equation. The exact solution of the fractional logistic differential equation with power law coefficients is also proposed as a special case of the proposed solution for the Bernoulli fractional differential equation. Some applications of the Bernoulli fractional differential equation to describe dynamic processes with power law memory in physics and economics are suggested.


Sign in / Sign up

Export Citation Format

Share Document