Porphyromonas gingivalis peptidylarginine deiminase substrate specificity

Anaerobe ◽  
2013 ◽  
Vol 23 ◽  
pp. 102-108 ◽  
Author(s):  
Syatirah-Najmi Abdullah ◽  
Elizabeth-Anne Farmer ◽  
Llewellyn Spargo ◽  
Richard Logan ◽  
Neville Gully
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Xida Zhao ◽  
Jingbo Liu ◽  
Chong Zhang ◽  
Ning Yu ◽  
Ze Lu ◽  
...  

AbstractUlcerative Colitis (UC) has been reported to be related to Porphyromonas gingivalis (P. gingivalis). Porphyromonas gingivalis peptidylarginine deiminase (PPAD), a virulence factor released by P. gingivalis, is known to induce inflammatory responses. To explore the pathological relationships between PPAD and UC, we used homologous recombination technology to construct a P. gingivalis strain in which the PPAD gene was deleted (Δppad) and a Δppad strain in which the PPAD gene was restored (comΔppad). C57BL/6 mice were orally gavaged with saline, P. gingivalis, Δppad, or comΔppad twice a week for the entire 40 days (days 0−40), and then, UC was induced by dextran sodium sulfate (DSS) solution for 10 days (days 31−40). P. gingivalis and comΔppad exacerbated DDS-induced colitis, which was determined by assessing the parameters of colon length, disease activity index, and histological activity index, but Δppad failed to exacerbate DDS-induced colitis. Flow cytometry and ELISA revealed that compared with Δppad, P. gingivalis, and comΔppad increased T helper 17 (Th17) cell numbers and interleukin (IL)-17 production but decreased regulatory T cells (Tregs) numbers and IL-10 production in the spleens of mice with UC. We also cocultured P. gingivalis, Δppad, or comΔppad with T lymphocytes in vitro and found that P. gingivalis and comΔppad significantly increased Th17 cell numbers and decreased Treg cell numbers. Immunofluorescence staining of colon tissue paraffin sections also confirmed these results. The results suggested that P. gingivalis exacerbated the severity of UC in part via PPAD.


2020 ◽  
Author(s):  
Danielle M. Vermilyea ◽  
M. Fata Moradali ◽  
Hey-Min Kim ◽  
Mary E. Davey

Many bacteria switch between a sessile and a motile mode in response to environmental and host-related signals. Porphyromonas gingivalis, an oral anaerobe implicated in the etiology of chronic periodontal disease, has long been described as a non-motile bacterium. Yet, recent studies have shown that under certain conditions, P. gingivalis is capable of surface translocation. Considering these findings, this work aimed to increase our understanding as to how P. gingivalis transitions between sessile growth and surface migration. Here we show that the peptidylarginine deiminase secreted by P. gingivalis (PPAD), an enzyme previously shown to be upregulated during surface translocation and to constrain biofilm formation, promotes surface translocation. In the absence of PPAD, the production of outer membrane vesicles (OMVs) was drastically reduced. In turn, there was a reduction in gingipain-mediated proteolysis and a reduced zone of hydration around the site of inoculation. RNA-Seq and metabolomics analyses also showed that these changes corresponded to a shift in arginine metabolism. Overall, this study provides new evidence for the functional relevance of PPAD and proteases, as well as the importance of PPAD activity in OMV biogenesis and release. Our findings support the model that citrullination is a critical mechanism during lifestyle transition between surface-attached growth and surface translocation by modulating OMV-mediated proteolysis and arginine metabolism. IMPORTANCE Gram-negative bacteria produce nanosized OMVs that are actively released into their surroundings. The oral anaerobe P. gingivalis is prolific in OMV production and many of the proteins packaged in these vesicles are proteolytic or protein modifying enzymes. This includes key virulence determinants, such as the gingipains and PPAD (a unique peptidylarginine deiminase). Here, we show that PPAD activity (citrullination) is involved in OMV biogenesis. The study reveals an unusual mechanism that allows this bacterium to transform its surroundings. Since OMVs are detected in circulation and in systemic tissues, our study also supports the notion that PPAD activity may be a key factor in the correlation between periodontitis and systemic diseases further supporting PPAD as an important therapeutic target.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Yasumitsu Sakamoto ◽  
Yoshiyuki Suzuki ◽  
Ippei Iizuka ◽  
Chika Tateoka ◽  
Saori Roppongi ◽  
...  

2013 ◽  
Vol 9 (9) ◽  
pp. e1003627 ◽  
Author(s):  
Katarzyna J. Maresz ◽  
Annelie Hellvard ◽  
Aneta Sroka ◽  
Karina Adamowicz ◽  
Ewa Bielecka ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Theodoros Goulas ◽  
Danuta Mizgalska ◽  
Irene Garcia-Ferrer ◽  
Tomasz Kantyka ◽  
Tibisay Guevara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document