scholarly journals Structural and mutational analyses of dipeptidyl peptidase 11 from Porphyromonas gingivalis reveal the molecular basis for strict substrate specificity

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Yasumitsu Sakamoto ◽  
Yoshiyuki Suzuki ◽  
Ippei Iizuka ◽  
Chika Tateoka ◽  
Saori Roppongi ◽  
...  
2017 ◽  
Vol 13 (12) ◽  
pp. 2729-2730
Author(s):  
M. Tomin ◽  
S. Tomić

Correction for ‘Dynamic properties of dipeptidyl peptidase III from Bacteroides thetaiotaomicron and the structural basis for its substrate specificity – a computational study’ by M. Tomin et al., Mol. BioSyst., 2017, 13, 2407–2417.


Anaerobe ◽  
2013 ◽  
Vol 23 ◽  
pp. 102-108 ◽  
Author(s):  
Syatirah-Najmi Abdullah ◽  
Elizabeth-Anne Farmer ◽  
Llewellyn Spargo ◽  
Richard Logan ◽  
Neville Gully

2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Miyako Shiraishi ◽  
Shigenori Iwai

ABSTRACT Endonuclease Q (EndoQ), a DNA repair endonuclease, was originally identified in the hyperthermophilic euryarchaeon Pyrococcus furiosus in 2015. EndoQ initiates DNA repair by generating a nick on DNA strands containing deaminated bases and an abasic site. Although EndoQ is thought to be important for maintaining genome integrity in certain bacteria and archaea, the underlying mechanism catalyzed by EndoQ remains unclear. Here, we provide insights into the molecular basis of substrate recognition by EndoQ from P. furiosus (PfuEndoQ) using biochemical approaches. Our results of the substrate specificity range and the kinetic properties of PfuEndoQ demonstrate that PfuEndoQ prefers the imide structure in nucleobases along with the discovery of its cleavage activity toward 5,6-dihydrouracil, 5-hydroxyuracil, 5-hydroxycytosine, and uridine in DNA. The combined results for EndoQ substrate binding and cleavage activity analyses indicated that PfuEndoQ flips the target base from the DNA duplex, and the cleavage activity is highly dependent on spontaneous base flipping of the target base. Furthermore, we find that PfuEndoQ has a relatively relaxed substrate specificity; therefore, the role of EndoQ in restriction modification systems was explored. The activity of the EndoQ homolog from Bacillus subtilis was found not to be inhibited by the uracil glycosylase inhibitor from B. subtilis bacteriophage PBS1, whose genome is completely replaced by uracil instead of thymine. Our findings suggest that EndoQ not only has additional functions in DNA repair but also could act as an antiviral enzyme in organisms with EndoQ. IMPORTANCE Endonuclease Q (EndoQ) is a lesion-specific DNA repair enzyme present in certain bacteria and archaea. To date, it remains unclear how EndoQ recognizes damaged bases. Understanding the mechanism of substrate recognition by EndoQ is important to grasp genome maintenance systems in organisms with EndoQ. Here, we find that EndoQ from the euryarchaeon Pyrococcus furiosus recognizes the imide structure in nucleobases by base flipping, and the cleavage activity is enhanced by the base pair instability of the target base, along with the discovery of its cleavage activity toward 5,6-dihydrouracil, 5-hydroxyuracil, 5-hydroxycytosine, and uridine in DNA. Furthermore, a potential role of EndoQ in Bacillus subtilis as an antiviral enzyme by digesting viral genome is demonstrated.


Biochemistry ◽  
2011 ◽  
Vol 50 (17) ◽  
pp. 3559-3569 ◽  
Author(s):  
Perrin Baker ◽  
Jason Carere ◽  
Stephen Y. K. Seah

Glycobiology ◽  
2007 ◽  
Vol 17 (8) ◽  
pp. 857-867 ◽  
Author(s):  
Magali Fondeur-Gelinotte ◽  
Virginie Lattard ◽  
Sandrine Gulberti ◽  
Rafael Oriol ◽  
Guillermo Mulliert ◽  
...  

2001 ◽  
Vol 75 (19) ◽  
pp. 9458-9469 ◽  
Author(s):  
Zachary Q. Beck ◽  
Ying-Chuan Lin ◽  
John H. Elder

ABSTRACT We have used a random hexamer phage library to delineate similarities and differences between the substrate specificities of human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV) proteases (PRs). Peptide sequences were identified that were specifically cleaved by each protease, as well as sequences cleaved equally well by both enzymes. Based on amino acid distinctions within the P3-P3′ region of substrates that appeared to correlate with these cleavage specificities, we prepared a series of synthetic peptides within the framework of a peptide sequence cleaved with essentially the same efficiency by both HIV-1 and FIV PRs, Ac-KSGVF↓VVNGLVK-NH2 (arrow denotes cleavage site). We used the resultant peptide set to assess the influence of specific amino acid substitutions on the cleavage characteristics of the two proteases. The findings show that when Asn is substituted for Val at the P2 position, HIV-1 PR cleaves the substrate at a much greater rate than does FIV PR. Likewise, Glu or Gln substituted for Val at the P2′ position also yields peptides specifically susceptible to HIV-1 PR. In contrast, when Ser is substituted for Val at P1′, FIV PR cleaves the substrate at a much higher rate than does HIV-1 PR. In addition, Asn or Gln at the P1 position, in combination with an appropriate P3 amino acid, Arg, also strongly favors cleavage by FIV PR over HIV PR. Structural analysis identified several protease residues likely to dictate the observed specificity differences. Interestingly, HIV PR Asp30 (Ile-35 in FIV PR), which influences specificity at the S2 and S2′ subsites, and HIV-1 PR Pro-81 and Val-82 (Ile-98 and Gln-99 in FIV PR), which influence specificity at the S1 and S1′ subsites, are residues which are often involved in development of drug resistance in HIV-1 protease. The peptide substrate KSGVF↓VVNGK, cleaved by both PRs, was used as a template for the design of a reduced amide inhibitor, Ac-GSGVFΨ(CH2NH)VVNGL-NH2. This compound inhibited both FIV and HIV-1 PRs with approximately equal efficiency. These findings establish a molecular basis for distinctions in substrate specificity between human and feline lentivirus PRs and offer a framework for development of efficient broad-based inhibitors.


Sign in / Sign up

Export Citation Format

Share Document