scholarly journals Net protein contribution and enteric methane production of pasture and grain-finished beef cattle supply chains

animal ◽  
2021 ◽  
Vol 15 (12) ◽  
pp. 100392
Author(s):  
D.T. Thomas ◽  
Y.G. Beletse ◽  
S. Dominik ◽  
S.A. Lehnert
2020 ◽  
Vol 98 (8) ◽  
Author(s):  
Darren D Henry ◽  
Francine M Ciriaco ◽  
Rafael C Araujo ◽  
Pedro L P Fontes ◽  
Nicola Oosthuizen ◽  
...  

Abstract Two randomized block designs were performed to evaluate the effects of bismuth subsalicylate (BSS) and encapsulated calcium-ammonium nitrate (eCAN) on enteric methane production, nutrient digestibility, liver mineral concentration, and performance of beef cattle consuming bahiagrass hay (Paspalum notatum; ad libitum) and sugar cane molasses [1.07 kg/d; dry matter basis]. Experiment 1, used 25 crossbred steers [335 ± 46 kg of initial body weight (BW)] with a 2 × 2 + 1 factorial arrangement of treatments for two 20 d periods. Factors were nonprotein nitrogen (NPN) source (350 mg/kg BW of nitrate or 182 mg/kg BW of urea), BSS (0 or 58.4 mg/kg BW), and a negative control (NCTRL; bahiagrass hay and molasses only). Steers were re-randomized for a second period (n = 10/treatment total). Intake, apparent total tract digestibility and enteric methane were evaluated. Experiment 2 used 75 crossbred heifers in 25 pens (3 heifers/pen; 279 ± 57 kg of initial BW), consuming the same diet and treatments as experiment 1, to determine liver mineral concentration and growth performance over 56 d. Orthogonal contrasts were used to evaluate the effects of NPN (NCTRL vs. others), source of NPN (NS; urea vs. eCAN), BSS, and NS × BSS. For experiment 1, no interactions were observed for any variables, nor were there any effects of NPN on total tract digestibility of nutrients, except for crude protein. Digestibility of all nutrients was reduced (P ≤ 0.021) for steers consuming eCAN compared with urea. There was no effect (P > 0.155) of BSS on digestibility of nutrients; however, BSS reduced (P = 0.003) apparent S retention. Enteric CH4 emission (g/kg BW0.75) was decreased (P = 0.051) by 11% with the addition of eCAN compared with urea. For experiment 2, no NS × BSS interactions (P ≥ 0.251) were observed to affect liver mineral concentration; however, the addition of BSS decreased liver concentration of Cu (P = 0.002) while increasing Fe concentration (P = 0.016). There was an NS × BSS interaction (P = 0.048) where heifers consuming eCAN and BSS had lesser final BW compared with heifers consuming urea and BSS. While eCAN may be a viable resource for mitigating enteric CH4 production of forage-fed cattle, the negative effects on digestibility should be considered. Furthermore, BSS, at the amount provided, appears to have no negative effects on digestibility of nutrients in forage-fed cattle; however, there may be deleterious impacts on performance depending upon what nitrogen source is supplied.


2019 ◽  
Vol 283 ◽  
pp. 106575 ◽  
Author(s):  
Henk J. van Lingen ◽  
Mutian Niu ◽  
Ermias Kebreab ◽  
Sebastião C. Valadares Filho ◽  
John A. Rooke ◽  
...  

Author(s):  
Paul Escobar-Bahamondes ◽  
M. Oba ◽  
Roland Kröbel ◽  
Tim Angus McAllister ◽  
Douglas MacDonald ◽  
...  

2014 ◽  
Vol 43 (11) ◽  
pp. 590-600 ◽  
Author(s):  
Roberta Carrilho Canesin ◽  
Telma Teresinha Berchielli ◽  
Juliana Duarte Messana ◽  
Fernando Baldi ◽  
Alexandre Vaz Pires ◽  
...  

2013 ◽  
Vol 91 (10) ◽  
pp. 4826-4831 ◽  
Author(s):  
H. C. Freetly ◽  
T. M. Brown-Brandl

Author(s):  
Alexandre M. Gabbi ◽  
Giovani J. Kolling ◽  
Vivian Fischer ◽  
Luiz Gustavo R. Pereira ◽  
Thierry R. Tomich ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Avijit Dey ◽  
Shyam Sundar Paul ◽  
Puran Chand Lailer ◽  
Satbir Singh Dahiya

AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.


2021 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Gemma Miller ◽  
Marc Auffret ◽  
Rainer Roehe ◽  
Holly Nisbet ◽  
Marina Martínez-Alvaro

2009 ◽  
Vol 92 (6) ◽  
pp. 2809-2821 ◽  
Author(s):  
L. Holtshausen ◽  
A.V. Chaves ◽  
K.A. Beauchemin ◽  
S.M. McGinn ◽  
T.A. McAllister ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document