Development of water buffalo (Bubalus bubalis) embryos from in vitro matured oocytes reconstructed with fetal skin fibroblast cells as donor nuclei

2006 ◽  
Vol 93 (3-4) ◽  
pp. 258-267 ◽  
Author(s):  
C.R. Meena ◽  
S.K. Das
2007 ◽  
Vol 19 (1) ◽  
pp. 169
Author(s):  
H. M. Zhou ◽  
Y. Chen

This study reconstructed embryos using adult and fetal skin fibroblast cells as donor karyoplasts and ovine enucleated oocytes as recipient cytoplasts for comparing the developmental potential of the reconstructed embryos. Ovine ovaries were collected at a local slaughterhouse and the cumulus–oocyte complexes (COCs) were extracted from antral follicles 2 to 5 mm in diameter. A group of 20 to 30 COCs were matured in a 50-�L microdrop of maturation medium that was composed of TCM-199 supplemented with 20% FBS, 10 �g mL-1 FSH, 20 �g mL-1 LH, and 1.5 �g mL-1 17β-estradiol under mineral oil in a 35-mm petri dish in humidified atmosphere of 5% CO2 in air at 38.5�C for 18–22 h. Then oocytes with extruded first polar body (MII) were selected and enucleated for use as recipient cytoplasm. Adult and fetal ovine skin tissues were cut into small pieces (1 mm3), transferred to a 25-mL culture flask containing 2 mL DMEM-F12 medium supplemented with 10% FBS, and then incubated by using explant tissue culture in humidified atmosphere of 5% CO2 in air at 37�C for 5 to 7 days. The medium and unattached epithelial cells were discarded. The attached fibroblast cells were digested by 0.25% trypsin in D-Hanks solution at 37�C for 5 min and dispersed by pipetting. The cell suspensions were transferred to a centrifuge tube and centrifuged at 100g for 10 min. Subsequently, the recovered cells were subcultured for 4–6 passages and then frozen in DMEM-F12 medium containing 10% dimethyl sulfoxide (DMSO) and 20% FBS in liquid nitrogen. The fibroblast cells were serum-starved in DMEM-F12 supplemented with 0.5% FBS for 3 to 5 days and transferred into a micromanipulation drop consisting of H-M199 supplemented with 10% FBS and 5 �g mL-1 cytochalasin B for use. The adult and fetal skin fibroblast cells were injected into the recipient cytoplasm. The fusion of fibroblast cells into the recipient cytoplasm was induced by electrofusion (1500 V cm-1 for 40 �s two times with an interval of 0.125 s). The fused oocytes were activated by 5 mM mL-1 ionomycin with 2 mM mL-1 6-dimethylaminopurine (6-DMAP). A group of 6–10 of the activated reconstructed embryos were co-cultured with ovine cumulus cells in synthetic oviduct fluid supplemented with amino acid (SOFaa) and 10% FBS in a 20-�L microdrop for 168 h. The results indicated that 76.0% (596/784) and 75.5% (249/330) of the nuclear transfer couplets were successfully fused from adult fibroblasts and fetal fibroblasts, respectively; 76.2% (454/596) and 79.5% (198/249) of the fused oocytes cleaved within 48 h after activation for adult and fetal, respectively; 26.9% (122/454) and 28.3% (56/198) of the cleaved oocytes developed to morula or/and blastocyst embryo stages, respectively. This study demonstrated that the ovine somatic cell transferred embryos were initiated for cell cycle of mitosis and underwent subsequent development to morula/blastocyst embryo stage in vitro, and that there were no statistical differences (P > 0.05) in developmental capacity between the cloned embryos from adult and fetal skin fibroblast cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vishal Panchariya ◽  
Vishal Bhati ◽  
Harishkumar Madhyastha ◽  
Radha Madhyastha ◽  
Jagdish Prasad ◽  
...  

AbstractExtraction of biosurfactants from plants is advantageous than from microbes. The properties and robustness of biosurfactant derived from the mesocarp of Balanites aegyptiaca have been reported. However, the dark brown property of biosurfactant and lack of knowledge of its biocompatibility limits its scope. In the present work, the decolorization protocol for this biosurfactant was optimized using hydrogen peroxide. The hemolytic potential and biocompatibility based on cell toxicity and proliferation were also investigated. This study is the first report on the decolorization and toxicity assay of this biosurfactant. For decolorization of biosurfactant, 34 full factorial design was used, and the data were subjected to ANOVA. Results indicate that 1.5% of hydrogen peroxide can decolorize the biosurfactant most efficiently at 40 °C in 70 min at pH 7. Mitochondrial reductase (MTT) and reactive oxygen species (ROS) assays on M5S mouse skin fibroblast cells revealed that decolorized biosurfactant up to 50 µg/mL for 6 h had no significant toxic effect. Hemolysis assay showed ~ 2.5% hemolysis of human RBCs, indicating the nontoxic effect of this biosurfactant. The present work established a decolorization protocol making the biosurfactant chromatically acceptable. Biocompatibility assays confirm its safer use as observed by experiments on M5S skin fibroblast cells under in vitro conditions.


2004 ◽  
Vol 61 (7-8) ◽  
pp. 1429-1439 ◽  
Author(s):  
Danilda Hufana-Duran ◽  
Prudencio B Pedro ◽  
Hernando V Venturina ◽  
Rogelio D Hufana ◽  
Apolinario L Salazar ◽  
...  

2012 ◽  
Vol 1 (2) ◽  
pp. 175-182 ◽  
Author(s):  
P. S. Yadav ◽  
Anita Mann ◽  
Jarnail Singh ◽  
D. Kumar ◽  
R. K. Sharma ◽  
...  

2015 ◽  
Vol 69 (4) ◽  
pp. 212 ◽  
Author(s):  
Zahra Ghobadian ◽  
Mohammad Ahmadi ◽  
Leila Rezazadeh ◽  
Ehsan Hosseini ◽  
Taleb Kokhazadeh ◽  
...  

Zygote ◽  
2002 ◽  
Vol 10 (2) ◽  
pp. 155-162 ◽  
Author(s):  
H.P.S. Kochhar ◽  
K.B.C. Appa Rao ◽  
A.M. Luciano ◽  
S.M. Totey ◽  
F. Gandolfi ◽  
...  

Interspecific hybrid embryos are useful models for the study of maternal-fetal interactions, transmission pattern of species-specific markers and parental contributions to growth and developmental potential of pre-attachment embryos. In an attempt to investigate the possibility of producing hybrid embryos of domestic cattle (Bos taurus) and water buffalo (Bubalus bubalis), cattle oocytes were exposed to buffalo sperm and buffalo oocytes were exposed to cattle sperm and the cleavage rate and the post-fertilisation features of hybrid embryos up to the blastocyst stage were compared with those of buffalo and cattle embryos. The cleavage rate in buffalo oocytes exposed to cattle sperm was low (40.8%), with only 8.8% of these hybrid embryos reaching the blastocyst stage. Cattle oocytes exposed to buffalo sperm showed 86.3% cleavage, while 25.9% of these attained the blastocyst stage. The speed of development of both types of hybrids was intermediate between that of cattle and buffalo embryos, with hatching occurring on day 7.5 in hybrid embryos, day 8-9 in cattle and day 7 in buffalo. The proportions of cells contributing to the trophectoderm and the inner cell mass were closer to those of the maternal species in both types of hybrid embryos. Our results indicate that cattle-water buffalo hybrid embryos produced using interspecies gametes are capable of developing to advanced blastocyst stages and that their in vitro fate, and developmental potential, are influenced by the origin of the oocyte.


2006 ◽  
Vol 74 (4) ◽  
pp. 2115-2120 ◽  
Author(s):  
Giorgia Borriello ◽  
Rosanna Capparelli ◽  
Michele Bianco ◽  
Domenico Fenizia ◽  
Flora Alfano ◽  
...  

ABSTRACT Brucellosis is a costly disease of water buffaloes (Bubalus bubalis). Latent infections and prolonged incubation of the pathogen limit the efficacy of programs based on the eradication of infected animals. We exploited genetic selection for disease resistance as an approach to the control of water buffalo brucellosis. We tested 231 water buffalo cows for the presence of anti-Brucella abortus antibodies (by the agglutination and complement fixation tests) and the Nramp1 genotype (by PCR-denaturing gradient gel electrophoresis). When the 231 animals (58 cases and 173 controls) were divided into infected (seropositive) and noninfected (seronegative) groups and the Nramp1 genotypes were compared, the seropositive subjects were 52 out of 167 (31%) in the Nramp1A + (Nramp1AA or Nramp1AB) group and 6 out of 64 (9.4%) in the Nramp1A − (Nramp1BB) group (odds ratio, 4.37; 95% confidence limits, 1.87 to 10.19; χ2, 11.65 for 1 degree of freedom). Monocytes from Nramp1BB subjects displayed significantly (P < 0.01) higher levels of Nramp1 mRNA than Nramp1AA subjects and also a significantly (P < 0.01) higher ability in controlling the intracellular replication of several Brucella species in vitro. Thus, selection for the Nramp1BB genotype can become a valuable tool for the control of water buffalo brucellosis in the areas where the disease is endemic.


Sign in / Sign up

Export Citation Format

Share Document