104 DEVELOPMENTAL POTENTIAL OF CLONED EMBRYOS FROM ADULT AND FETAL OVINE SOMATIC CELLS

2007 ◽  
Vol 19 (1) ◽  
pp. 169
Author(s):  
H. M. Zhou ◽  
Y. Chen

This study reconstructed embryos using adult and fetal skin fibroblast cells as donor karyoplasts and ovine enucleated oocytes as recipient cytoplasts for comparing the developmental potential of the reconstructed embryos. Ovine ovaries were collected at a local slaughterhouse and the cumulus–oocyte complexes (COCs) were extracted from antral follicles 2 to 5 mm in diameter. A group of 20 to 30 COCs were matured in a 50-�L microdrop of maturation medium that was composed of TCM-199 supplemented with 20% FBS, 10 �g mL-1 FSH, 20 �g mL-1 LH, and 1.5 �g mL-1 17β-estradiol under mineral oil in a 35-mm petri dish in humidified atmosphere of 5% CO2 in air at 38.5�C for 18–22 h. Then oocytes with extruded first polar body (MII) were selected and enucleated for use as recipient cytoplasm. Adult and fetal ovine skin tissues were cut into small pieces (1 mm3), transferred to a 25-mL culture flask containing 2 mL DMEM-F12 medium supplemented with 10% FBS, and then incubated by using explant tissue culture in humidified atmosphere of 5% CO2 in air at 37�C for 5 to 7 days. The medium and unattached epithelial cells were discarded. The attached fibroblast cells were digested by 0.25% trypsin in D-Hanks solution at 37�C for 5 min and dispersed by pipetting. The cell suspensions were transferred to a centrifuge tube and centrifuged at 100g for 10 min. Subsequently, the recovered cells were subcultured for 4–6 passages and then frozen in DMEM-F12 medium containing 10% dimethyl sulfoxide (DMSO) and 20% FBS in liquid nitrogen. The fibroblast cells were serum-starved in DMEM-F12 supplemented with 0.5% FBS for 3 to 5 days and transferred into a micromanipulation drop consisting of H-M199 supplemented with 10% FBS and 5 �g mL-1 cytochalasin B for use. The adult and fetal skin fibroblast cells were injected into the recipient cytoplasm. The fusion of fibroblast cells into the recipient cytoplasm was induced by electrofusion (1500 V cm-1 for 40 �s two times with an interval of 0.125 s). The fused oocytes were activated by 5 mM mL-1 ionomycin with 2 mM mL-1 6-dimethylaminopurine (6-DMAP). A group of 6–10 of the activated reconstructed embryos were co-cultured with ovine cumulus cells in synthetic oviduct fluid supplemented with amino acid (SOFaa) and 10% FBS in a 20-�L microdrop for 168 h. The results indicated that 76.0% (596/784) and 75.5% (249/330) of the nuclear transfer couplets were successfully fused from adult fibroblasts and fetal fibroblasts, respectively; 76.2% (454/596) and 79.5% (198/249) of the fused oocytes cleaved within 48 h after activation for adult and fetal, respectively; 26.9% (122/454) and 28.3% (56/198) of the cleaved oocytes developed to morula or/and blastocyst embryo stages, respectively. This study demonstrated that the ovine somatic cell transferred embryos were initiated for cell cycle of mitosis and underwent subsequent development to morula/blastocyst embryo stage in vitro, and that there were no statistical differences (P > 0.05) in developmental capacity between the cloned embryos from adult and fetal skin fibroblast cells.

2007 ◽  
Vol 19 (1) ◽  
pp. 173 ◽  
Author(s):  
J. Braun ◽  
C. Otzdorff ◽  
T. Tsujioka ◽  
S. Hochi

The effects of slow freezing or vitrification as well as exposure to the cryoprotective media without cooling and warming of in vitro-matured domestic cat oocytes on the in vitro development to the blastocyst stage was investigated. Cumulus–oocyte complexes were matured for 24 h in TCM-199 supplemented with 3 mg mL−1 BSA, 1 µg mL−1 estradiol, 0.1 IU mL−1 FSH, and 0.0063 IU mL−1 LH. Denuded oocytes with a detectable first polar body were inseminated with 2 × 106 cells mL−1 cauda epididymal spermatozoa for 22 h in TALP solution. Presumptive zygotes were cultured in modified SOF medium at 38.5°C in 5% CO2 in air. For slow freezing, oocytes were equilibrated for 20 min at ambient temperatures in PBS with 20% FCS containing either 1.5 M ethylene glycol (EG) + 0.2 M sucrose or 1.5 M EG + 0.2 M trehalose. Oocytes were loaded into 0.25-mL straws, cooled to −7°C at 2°C min, held for 5 min, seeded, cooled down to −30°C at 0.3°C min, and finally plunged into liquid nitrogen. The straws were thawed for 5 s at room temperature and for 30 s in a waterbath at 30°C. Oocytes were washed 3 times before insemination. In vitro-matured oocytes were exposed to the cryoprotective media for 30 min before they were inseminated and then they were cultured for 7 days. For vitrification (Hochi et al. 2004 Theriogenology 61, 267–275), a minimum-volume cooling procedure using Cryotop (Kitazato Supply Co., Tokyo, Japan) as a cryodevice was applied. No blastocysts could be obtained after slow freezing with a cryoprotective medium containing 0.2 M sucrose. Simple exposure to the same freezing medium after in vitro maturation without cryopreservation resulted in a blastocyst rate of 7.9% (control oocytes, 10.7%; not significant (NS); chi-square analysis). Use of trehalose as an extracellular cryoprotectant resulted in the harvest of one blastocyst (0.6%) after slow freezing. Exposure to the same cryoprotective medium resulted in a blastocyst rate of 10.0% (fresh control, 10.9%; NS). After exposure of in vitro-matured oocytes to the vitrification solution, a blastocyst rate of 16.0% was observed (8/50), which was not statistically different from the blastocyst rate in fresh control oocytes (16.3%; 15/92). No blastocysts could be obtained after vitrification (0/64). The results (Table 1) demonstrate that there is no obvious toxic effect of the cryoprotectants employed here for slow freezing or vitrification on the in vitro-matured oocytes, but the developmental potential of cryopreserved oocytes to the blastocyst stage is severely impaired. Table 1. Effect of slow freezing or exposure to freezing medium of matured cat oocytes on the development to the blastocyst stage in vitro


Reproduction ◽  
2001 ◽  
pp. 925-932 ◽  
Author(s):  
X Li ◽  
LH Morris ◽  
WR Allen

The influence of co-culture with either oviduct epithelial cells or fetal fibroblast cells on in vitro maturation of equine oocytes and their potential for development to blastocysts and fetuses after intracytoplasmic sperm injection (ICSI) was investigated. The oocytes were obtained from ovaries from abattoirs and were matured in vitro for 28-30 h in TCM-199 only, or in TCM-199 co-culture with oviduct epithelial cells or fetal fibroblast cells. Metaphase II oocytes were subjected to ICSI with an ionomycin-treated spermatozoon. The injected oocytes were cultured for 7-9 days in Dulbecco's modified Eagle's medium. Morphologically normal early blastocysts were transferred to the uteri of recipient mares. Nuclear maturation rates and the rates of cleavage to the two-cell stage for injected oocytes were similar in the groups of oocytes that were matured in TCM-199 (49 and 63%), in co-culture with oviduct epithelial cells (53 and 65%) or in co-culture with fetal fibroblasts (51 and 57%). There were no significant differences in the proportions of blastocysts that developed from the two-cell embryos derived from oocytes matured by co-culture with either oviduct epithelial cells (30%) or fetal fibroblasts (17%). However, significantly higher proportions of blastocysts were produced from both these co-culture groups than from the groups of oocytes matured in TCM-199 only (P < 0.05). Six of the blastocysts that had developed from oocytes co-cultured with oviduct epithelial cells were transferred into recipient mares and four pregnancies resulted. These results demonstrate a beneficial influence of co-culture with either oviduct epithelial cells or fetal fibroblasts for maturation of oocytes in vitro.


2007 ◽  
Vol 19 (1) ◽  
pp. 146
Author(s):  
P. M. Kragh ◽  
Y. Du ◽  
J. Li ◽  
Y. Zhang ◽  
L. Bolund ◽  
...  

Somatic cell nuclear transfer (SCNT) offers the possibility of pig transgenesis. Importantly, genetic manipulations can be performed in cells isolated from special breeds followed by SCNT into enucleated oocytes isolated from slaughterhouse ovaries. In the present study, we established production of Yucatan blastocysts by the handmade cloning (HMC) technique using non-transgenic fibroblasts from the Yucatan miniature pig, and produced transgenic blastocysts using enhanced green fluorescent protein (EGFP)-positive Yucatan fetal fibroblasts. For transgenesis, Yucatan fibroblasts from a 40-day old fetus were transfected with a vector containing an EGFP gene and a neomycin-resistance selection gene by lipofection. Well separated neomycin-resistant colonies were isolated, expanded, and used for HMC. For HMC, cumulus–oocyte complexes were aspirated from ovaries of slaughterhouse sows and matured for 41 h. Subsequently, the cumulus cells were removed in hyaluronidase, and zonae pellucidae were partially digested by incubation in pronase. Oocytes with a visible polar body (PB) were subjected to oriented bisection. Less than half of the cytoplasm adjacent to the PB was removed with a microblade. The remaining parts, i.e. cytoplasts, were used as recipients for embryo reconstruction. Reconstructed embryos were produced by a two-step fusion procedure. At the first step, one cytoplast was fused with one fibroblast in the absence of Ca2+. After one h, the cytoplast-fibroblast pair and another cytoplast were fused and activated simultaneously in the presence of Ca2+, and subsequently cultured in cytochalasin B and cycloheximide for 4 h. The development of reconstructed embryos to the blastocyst stage was determined after 7 days of in vitro culture. When using non-transgenic and EGFP-positive Yucatan fetal fibroblasts, the rate of blastocyst formation (mean � SEM) were 36 � 7% (36/102) and 42 � 7% (32/77), respectively. In conclusion, the HMC technique was very efficient for production of blastocysts of Yucatan miniature pig origin using both non-transgenic and EGFP-positive fetal fibroblasts.


2008 ◽  
Vol 20 (1) ◽  
pp. 145
Author(s):  
H. J. Kim ◽  
S. R. Cho ◽  
C. Y. Choe ◽  
S. H. Choi ◽  
D. S. Son ◽  
...  

The objective of this study was to examine the selection effects of in vitro matured porcine follicular oocytes with polar body extrusion and early cleavage as a non-invasive marker to know the developmental competence in advance. Porcine oocytes matured for 48 h and then examined for polar body extrusion. The examined oocytes were matured for an additional 16–18 h, activated with 7% ethanol, and cultured in 5 µg mL–1 cytochalasin B for 5 h for diploid formation. The treated oocytes were examined for cleavage after 48 h and continued culturing for 5 days. Each treatment was replicated by 3–4 times. Oocytes of 21.9% (70/320) were discarded in morphological selection, and 32.1% (167/520) oocytes were discarded by failure of first polar body extrusion. The selected oocytes were matured and activated, and after 48 h, the cleavage rate was examined. In morphologically selected oocytes, 15.8% (30/190) were not cleaved, 52.6% (100/190) were normally cleaved (consisted of 2–7 cells), and 31.6% (60/190) were hyper-cleaved (consisted of 8 cells or more) at 48 h after activation. However, in the first polar body extruded oocytes, 7.1% (18/253) were not cleaved, 73.1% (185/253) were normally cleaved, and 19.8% (50/253) were hyper-cleaved. From the morphologically selected oocytes, 16.7% (10/60) were developed up to blastocyst stage from those in which cleavage selection was not performed and 31.7% (19/60) from those in which cleavage selection was performed. From the polar body extruded oocytes, 39.0% (39/100) were developed up to blastocyst stage from those in which cleavage selection was not performed and 49.0% (49/100) from those in which cleavage selection was performed. Cleavage was examined within 12 h interval after activation (0 = time of activation) up to 48 h. At 0–12, 12–24, 24–36, and 36–48 h intervals, 4.1% (9/220), 68.6% (151/220), 19.1% (42/220), and 2.3% (5/220) oocytes were cleaved, respectively, and 5.9% (13/220) oocytes were not cleaved at 48 h after activation. The cleaved embryos in each interval were cultured and developed up to blastocyst with 0 (0/9), 39.1 (59/151), 9.5 (4/42), and 0% (0/5), respectively. This result suggests that the polar body extruded and cleaved at 12–36 h embryo has higher developmental potential than the others.


2010 ◽  
Vol 22 (1) ◽  
pp. 199
Author(s):  
L.-Y. Sung ◽  
C.-H. Chen ◽  
T.-A. Lin ◽  
L.-J. Sung ◽  
H.-Y. Su ◽  
...  

This study was designed to examine the effect of rabbit oocytes collected from oviducts v. follicles on the developmental potential of nuclear transplant (NT) embryos. Rabbit oocytes were flushed from the oviducts (oviduct oocytes) or collected from the ovarian Graafian follicles(follicular oocytes) of superovulated does at 12 h post-hCG injection (hpi). Cumulus cells were then removed from the oocytes by incubation in 0.5% hyaluronidase and pipetting. Oocyte enucleation was conducted in TCM-199 +10% fetal bovine serum (FBS) and confirmed under fluorescent microscopy. Skin fibroblasts from an adult rabbit were prepared and cultured to passage 8 to 10 before use as nuclear donors. A donor cell with a diameter of approximately 15 to 19 μm was transferred into the perivitelline space of an enucleated oocyte and subsequently fused with the recipient oocyte by applying 3 direct current pulses at 3.2 kV cm-1 for 20 μs per pulse. Fused oocytes were activated by the same electrical stimulation described above, and then cultured in TCM-199 + 10% FBS containing 2.0 mM 6-DMAP and 5 μg mL-1 cycloheximide for 1 h. Cloned embryos were cultured in 2.5% FBS B2 medium in 5% CO2 and 95% humidified air at 38.5°C for 3 d. Embryo development to cleavage (2- to 4-cell), 8-cell, and morula/blastocyst (Mor/BL) stages was evaluated. The data were analyzed by the General Linear Model procedure (SPSS 11.0, SPSS Inc., Chicago, IL, USA).The total number of oocytes collected per animal was 27.6 ± 1.3, with 47.8% from oviducts, and 52.2% from follicles. The percentage of oviduct oocytes that showed the first polar body was 98.3% (n = 150) at the time of collection, whereas follicular oocytes only had 54.8% at collection (n = 93), but it reached 92.4% when immature follicular oocytes were cultured for 3 h in vitro. The enucleation rates were similar between the follicular (82.7%) and the oviduct (79.1%) groups. Table 1 shows that a significantly higher fusion rate was found in follicular oocytes compared with that in the oviduct group (90.8 v. 63.4%; P < 0.05). There was no difference in the cleavage rate and Mor/BL development between the 2 groups, although the 8-cell(78.4 v. 63.9%; P = 0.11) and the overall efficiencies (30.6% v. 17.9%; P = 0.14) appeared higher in the follicular group. These results demonstrated that rabbit follicular oocytes at 12 hpi have potential equivalent or maybe better (fusion) than that with oviduct oocytes for promoting the preimplantational development of NT embryos. Table 1.The effect of follicular and oviduct oocytes on the development of rabbit NT embryos Supported by NIH1R43 RR023774-01A1 and 5R44HL091605-03.


2007 ◽  
Vol 19 (1) ◽  
pp. 134
Author(s):  
P. Q. Cong ◽  
E. S. Song ◽  
E. S. Kim ◽  
Z. H. Li ◽  
Y. J. Yi ◽  
...  

Pigs have become increasingly important in the field of biomedical research, and interest has grown in the use of transgenic cloned pigs as potential xenograft donors. The present study were carried out to investigate the effects of intensity of DC pulse, number of DC pulses, and equilibration before fusion/activation on developmental ability of porcine embryos derived from nuclear transfer. Porcine cumulus-oocyte complexes (COCs) were cultured in modified TCM-199 (mTCM-199) medium for 44 h at 38.5�C, 5% CO2 in air. After in vitro maturation (IVM), metaphase II oocytes were selected for enucleation. Porcine fetal fibroblasts were obtained from a porcine fetus on Day 35 of gestation as donor cells. Oocytes were enucleated by removing, with a micropipette, the first polar body along with adjacent cytoplasm containing the metaphase plate; then a donor cell was injected in contact with the cytoplasm of each oocyte. In experiment 1, several different fusion/activation intensities (two DC pulses of 0.4, 0.8, 1.2, 1.6, and 2.0 kV cm-1 for 30 �s) were carried out to investigate the effect on the development of nuclear transfer embryos. In experiment 2, the reconstructed oocytes were fused and activated with 1, 2, or 3 DC pulses of 1.2 kV cm-1 for 30 �s. In experiment 3, reconstructed oocytes were equilibrated in mTCM-199 medium at 38.5�C, 5% CO2 for 0, 1, 2, 3, 4, 5, and 6 h. After equilibration, the reconstructed oocytes were fused and activated with one DC pulse of 1.2 kV cm-1 for 30 �s in fusion medium. The reconstructed embryos were transferred into PZM-3 medium containing 0.3% BSA for further culture. The rates of embryo cleavage and development of blastocyst stage were evaluated at 48 h and 6-7 days, respectively. The cell numbers of blastocysts were counted by using Hoechst 33342 epifluorescence staining. Data were analyzed by ANOVA and Duncan


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Muhammad Joan Ailia ◽  
Yun-Kyong Jin ◽  
Hee-Kyoung Kim ◽  
Goo Jang

Abstract Background Murine is the most abundantly used as laboratory animal models. There has been a tremendous amount of research including; their evolution, growth, physiology, disease modeling as well as genomic mapping. Rats and mice are the most widely used among them. Although both rats and mice fall under the same category still both are different a lot too. As regarding in vitro maturation and development mouse studies are well established as compared to rats which still lies in the early phase of development. So, we tried to figure out rat oocytes in vitro maturation and their developmental potential by performing 3 experiments i.e. superovulation, in vitro Maturation as simple culture (COC’s only), and COC’s & cumulus cells co-culture, which later further developed using parthenogenetic activation after IVM. Female Sprague Dawley rat 3–4 week used for these studies, we hyper-stimulated their ovaries using PMSG and hCG 150 IU/kg each. After that, we collected ovaries via dissection and retrieved oocytes. We matured them in TCM 199 supplemented with FSH, Estrogen, EGF, and Pyruvate. After maturation, we activated them using two types of activators i.e. Ethanol 7%, Ionomycin. After that, we saw and compared their developmental potential in vitro. Results Oocytes matured in COC’s and Cumulus cell monolayer co-culture (59% ± 4*) showed significantly more even growth and extrusion of the first polar body as compared to the COC’s only culture (53.8 ± 7%*). While oocytes activated using Ionomycin showed more promising development until 8 cells/blastocyst level compared to ethanol 7%. Conclusion we concluded that COC’s and cumulus monolayer co-culture is better than COC’s only culture. Cumulus monolayer provides extra aid in the absorption of nutrients and supplements thus providing a better environment for oocytes growth. Also, we concluded that matured oocytes showed more developmental capacity after activation via ionomycin compared to ethanol.


2005 ◽  
Vol 17 (2) ◽  
pp. 248
Author(s):  
C.R. Meena ◽  
S.K. Das

The present study was undertaken to explore the feasibility of using buffalo fetal skin fibroblasts as donor nuclei and to determine the developmental competence of embryos following transfer of these nuclei to in vitro-matured enucleated buffalo oocytes. Skin cells were isolated from 1–2-month-old fetuses, obtained from an abattoir, by enzymatic digestion (0.5% w/v trypsin + 0.05% w/v collagenase in Dulbecco's PBS) for 15–20 min. The cells were washed four times with Dulbecco's PBS and then once with RPMI-1640 medium + 10% FBS by centrifugation at 600g. The cells were then cultured in the same medium in a CO2 incubator (5% CO2 in air) at 38.5°C for 2–3 days. COCs collected from slaughterhouse buffalo ovaries were subjected to IVM in the IVM medium (TCM-199 + 1 μg mL−1 E-β + 5 μg mL−1 FSH-P + 10 μg mL−1 LH + 10% FBS) for 22–24 h in a CO2 incubator (5% CO2 in air) at 38.5°C. Oocytes were denuded with 0.1% trypsin followed by repeated pipetting and then enucleated by aspirating the first polar body and 10–15% of nearby cytoplasm with a micromanipulator. Two different types of donor cells (growing cells and those arrested with cytochalasin-B) were used for reconstruction of oocytes. The reconstructs were electrofused and incubated in the activation medium (TCM-199 + 8 μg mL−1 cytochalasin-B + 10% FBS) for 4 h. These were then cultured in IVC medium (TCM-199 + 10% FBS) in a CO2 incubator (5% CO2 in air) at 38.5°C for 48 h. Next, the cleaved embryos were co-cultured with buffalo oviductal cells in embryo development medium. Out of 119 denuded matured oocytes which were enucleated and reconstructed with growing cells, 78 (65.5%) were electrofused, activated and cultured, out of which 4 (5.1%) reconstructs cleaved and developed to the 2-cell stage, 3 (3.8%) reached the 4-cell stage, and 1 (1.3%) reached the 8-cell stage. In the synchronized group, out of 100 denuded matured oocytes which were reconstructed with cytochalasin-B blocked cells, 40 (40%) were electrofused, activated, and cultured, out of which 4 (10%) developed to the 2-cell stage, 3 (7.5%) to the 4-cell stage, 2 (5.0%) to early morula stage, and 1 (2.5%) to blastocyst stage. These results suggest that buffalo fetal skin fibroblasts could be used as donor nuclei for the production of buffalo embryos after nuclear transfer to enucleated in vitro-matured buffalo oocytes.


Author(s):  
Sicong Yu ◽  
Lepeng Gao ◽  
Chang Zhang ◽  
Yumeng Wang ◽  
Hainan Lan ◽  
...  

The endoplasmic reticulum (ER) is a multifunctional organelle in the cytoplasm that plays important roles in female mammalian reproduction. The endoplasmic reticulum and mitochondria interact to maintain the normal function of cells by maintaining intracellular calcium homeostasis. As proven by previous research, glycine (Gly) can regulate the intracellular free calcium concentration ([Ca2+]i) and enhance mitochondrial function to improve oocyte maturation in vitro. The effect of Gly on ER function during oocyte in vitro maturation (IVM) is not clear. In this study, we induced an ER stress model with thapsigargin (TG) to explore whether Gly can reverse the ER stress induced by TG treatment and whether it is associated with calcium regulation. The results showed that the addition of Gly could improve the decrease in the average cumulus diameter, the first polar body excretion rate caused by TG-induced ER stress, the cleavage rate and the blastocyst rate. Gly supplementation could reduce the ER stress induced by TG by significantly improving the ER levels and significantly downregulating the expression of genes related to ER stress (Xbp1, ATF4, and ATF6). Moreover, Gly also significantly alleviated the increase in reactive oxygen species (ROS) levels and the decrease in mitochondrial membrane potential (ΔΨ m) to improve mitochondrial function in porcine oocytes exposed to TG. Furthermore, Gly reduced the [Ca2+]i and mitochondrial Ca2+ ([Ca2+]m) levels and restored the ER Ca2+ ([Ca2+]ER) levels in TG-exposed porcine oocytes. Moreover, we found that the increase in [Ca2+]i may be caused by changes in the distribution and expression of inositol 1,4,5-triphosphate receptor (IP3R1) and voltage-dependent anion channel 1 (VDAC1), while Gly can restore the distribution and expression of IP3R1 and VDAC1 to normal levels. Apoptosis-related indexes (Caspase 3 activity and Annexin-V) and gene expression Bax, Cyto C, and Caspase 3) were significantly increased in the TG group, but they could be restored by adding Gly. Our results suggest that Gly can ameliorate ER stress and apoptosis in TG-exposed porcine oocytes and can further enhance the developmental potential of porcine oocytes in vitro.


Sign in / Sign up

Export Citation Format

Share Document