In Vitro and In Vivo Efficacy of Combinational Therapy with Favipiravir (T-705) and Oseltamivir Against Influenza A/CA/04/09 Pandemic H1N1 Virus

2010 ◽  
Vol 86 (1) ◽  
pp. A26
Author(s):  
Dale Barnard ◽  
Yousuke Furuta ◽  
Klaus Klummp ◽  
Donald Smee ◽  
John Morrey ◽  
...  
Viruses ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 117 ◽  
Author(s):  
Qinhai Ma ◽  
Qingtian Yu ◽  
Xuefeng Xing ◽  
Sinian Liu ◽  
Chunyu Shi ◽  
...  

2020 ◽  
Author(s):  
Zhaomin Feng ◽  
Wenfei Zhu ◽  
Lijuan Zhou ◽  
Yongkun Chen ◽  
Xiyan Li ◽  
...  

Abstract BackgroundCurrently, Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses (SIVs) are widely prevalent in pigs in China, with sporadic human cases reported as well. As one of the key molecular makers detected in avian H5N1 and H 7N9 viruses and pandemic H1N1 2009 virus, contributions of T271A in PB2 protein to the EA H1N1 viruses are still unknown. In this study, we investigated the effects of residue 271 in PB2 protein on the viral properties of EA H1N1 viruses.MethodsInfectivity, replication, virulence and pathogenicity of the recombinant viruses containing A or T in position 271 in PB2 protein were studied in cells and mice.ResultsThe results showed that the substitution PB2-T271A increased the viral replication in mammalian and avian cell lines. In addition, the mutation enhanced the viral infectivity, virulence and pathogenicity in mice. The viral titers of lung tissue in the rgHuN271A virus were higher than that of the rgHuN271T at 1, 4, and 7 dpi. The MID50 of the rgHuN271A and rgHuN271T virus were 101.1 TCID50 and 101.9 TCID50, respectively. Besides, the substitution of PB2-T271A enhanced the viral polymerase activity in mammalian cells.ConclusionsThe pathogenicity and replication of EA H1N1 virus containing 271A in PB2 protein were higher than the EA H1N1 virus containing 271T in PB2 protein in vivo and in vitro. Therefore, the PB2-T271A mutation should be continually monitored in influenza viruses circulating in pigs and humans.


2016 ◽  
Vol 7 (11) ◽  
pp. 839-843 ◽  
Author(s):  
Song Wang ◽  
Xiaoqin Luo ◽  
Ruoxiang Yan ◽  
Quanxin Wang ◽  
Qiuyue Qi ◽  
...  

2019 ◽  
Author(s):  
Helen M. Wise ◽  
Eleanor Gaunt ◽  
Jihui Ping ◽  
Barbara Holzer ◽  
Seema Jasim ◽  
...  

AbstractThe 2009 influenza A virus (IAV) pandemic (pdm2009) was caused by a swine H1N1 virus with several atypical genetic features. Here, we investigate the origin and significance of an upstream AUG (uAUG) codon in the 5’-untranslated region of the NP gene. Phylogeny indicated that the uAUG codon arose in the classical swine IAV lineage in the mid 20th Century, and has become fixed in the current triple reassortant, variant pdm2009 swine IAV and human pdm2009 lineages. Functionally, it supports leaky ribosomal initiation in vitro and in vivo to produce two isoforms of NP: canonical, and a longer “eNP”. The uAUG codon had little effect on viral gene expression or replication in vitro. However, in both murine and porcine models of IAV infection, removing the uAUG codon gene attenuated pdm2009 virus pathogenicity. Thus, the NP uAUG codon is a virulence factor for swine IAVs with proven zoonotic ability.


2013 ◽  
Vol 159 (3) ◽  
pp. 471-483 ◽  
Author(s):  
Jianjun Chen ◽  
Bin Yan ◽  
Quanjiao Chen ◽  
Yanfeng Yao ◽  
Huadong Wang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mitchell R. White ◽  
Nikolaos M. Nikolaidis ◽  
Francis McCormack ◽  
Erika C. Crouch ◽  
Kevan L. Hartshorn

Mannose-binding lectins effectively inhibit most seasonal strains of influenza A virus and contribute to the innate host defense vs. these viruses. In contrast, pandemic IAV strains are largely resistant to these lectins, likely contributing to increased spread and worse outcomes. In this paper, we evaluated the inhibition of IAV by mannose-binding lectins of human, bacterial, and fungal origin to understand and possibly increase activity vs. the pandemic IAV. A modified version of the human surfactant protein D (SP-D) neck and carbohydrate recognition domain (NCRD) with combinatorial substitutions at the 325 and 343 positions, previously shown to inhibit pandemic H3N2 IAV in vitro and in vivo, and to inhibit pandemic H1N1 in vitro, failed to protect mice from pandemic H1N1 in vivo in the current study. We attempted a variety of maneuvers to improve the activity of the mutant NCRDs vs. the 2009 pandemic H1N1, including the formation of full-length SP-D molecules containing the mutant NCRD, cross-linking of NCRDs through the use of antibodies, combining SP-D or NCRDs with alpha-2-macroglobulin, and introducing an additional mutation to the double mutant NCRD. None of these substantially increased the antiviral activity for the pandemic H1N1. We also tested the activity of bacterial and algal mannose-binding lectins, cyanovirin, and griffithsin, against IAV. These had strong activity against seasonal IAV, which was largely retained against pandemic H1N1. We propose mechanisms to account for differences in activity of SP-D constructs against pandemic H3N2 and H1N1, and for differences in activity of cyanovirin vs. SP-D constructs.


2012 ◽  
Vol 93 (6) ◽  
pp. 1269-1277 ◽  
Author(s):  
Kai Sen Tan ◽  
Farzad Olfat ◽  
Meng Chee Phoon ◽  
Jung Pu Hsu ◽  
Josephine L. C. Howe ◽  
...  

Influenza A virus has caused a number of pandemics in past decades, including the recent H1N1-2009 pandemic. Viperin is an interferon (IFN)-inducible protein of innate immunity, and acts as a broad-spectrum antiviral protein. We explored the antiviral activities and mechanisms of viperin during influenza virus (IFV) infection in vitro and in vivo. Wild-type (WT) HeLa and viperin-expressing HeLa cells were infected with influenza A/WSN/33/H1N1 (WSN33) virus, and subjected to virological, light and electron microscopic analyses. Viperin expression reduced virus replication and titres, and restricted viral budding. Young and old viperin-knockout (KO) mice and WT control animals were challenged with influenza WSN33 at lethal doses of 103 and 104 p.f.u. via the intratracheal route. Lungs were subjected to histopathological, virological and molecular studies. Upon lethal IFV challenge, both WT and KO mice revealed similar trends of infection and recovery with similar mortality rates. Viral quantification assay and histopathological evaluation of lungs from different time points showed no significant difference in viral loads and lung damage scores between the two groups of mice. Although the in vitro studies demonstrated the ability of viperin to restrict influenza H1N1 virus replication, the viperin-deficient mouse model indicated that absence of viperin enhanced neither the viral load nor pulmonary damage in the lungs of infected mice. This may be due to the compensation of IFN-stimulated genes in the lungs and/or the influenza non-structural protein 1-mediated IFN antagonism dampening the IFN response, thereby rendering the loss of viperin insignificant. Nevertheless, further investigations that exploit the antiviral mechanisms of viperin as prophylaxis are still warranted.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pierre Santucci ◽  
Daniel J. Greenwood ◽  
Antony Fearns ◽  
Kai Chen ◽  
Haibo Jiang ◽  
...  

AbstractTo be effective, chemotherapy against tuberculosis (TB) must kill the intracellular population of the pathogen, Mycobacterium tuberculosis. However, how host cell microenvironments affect antibiotic accumulation and efficacy remains unclear. Here, we use correlative light, electron, and ion microscopy to investigate how various microenvironments within human macrophages affect the activity of pyrazinamide (PZA), a key antibiotic against TB. We show that PZA accumulates heterogeneously among individual bacteria in multiple host cell environments. Crucially, PZA accumulation and efficacy is maximal within acidified phagosomes. Bedaquiline, another antibiotic commonly used in combined TB therapy, enhances PZA accumulation via a host cell-mediated mechanism. Thus, intracellular localisation and specific microenvironments affect PZA accumulation and efficacy. Our results may explain the potent in vivo efficacy of PZA, compared to its modest in vitro activity, and its critical contribution to TB combination chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document