swine influenza
Recently Published Documents


TOTAL DOCUMENTS

1102
(FIVE YEARS 182)

H-INDEX

62
(FIVE YEARS 7)

Author(s):  
Gerard Martín-Valls ◽  
Yanli Li ◽  
Ivan Díaz ◽  
Esmeralda Cano ◽  
Silvana Sosa Portugal ◽  
...  

Respiratory disease in weaned pigs is a common problem in the field, with a complex aetiology of both viruses and bacteria. In the present study, we investigated the presence of eleven viruses in nasal swabs collected from nurseries (fifty-five clinical outbreaks) under the suspicion of swine influenza A virus (swIAV) by cough and fever. The other ten viruses included influenza B (IBV) and influenza D viruses (IDV), Porcine reproductive and respiratory syndrome virus (PRRSV), Porcine respiratory coronavirus (PRCV), Porcine cytomegalovirus (PCMV), porcine circoviruses 2 (PCV2), 3 (PCV3) and 4 (PCV), Porcine parainfluenza 1 virus (PPIV1) and Swine orthopneumovirus (SOV). Twenty-nine swIAV-positive cases and twenty-six cases of swIAV-negative respiratory disease were primarily established. IBV, IBD, PCV4 and PPIV1 were not found in any case, while PRCV, SOV, and PCMV were more likely to be found in swIAV-positive nurseries with respiratory disease ( p<0.05) although, globally, PCV3, PRRSV, and PCMV were the most frequently detected agents on herd level. At an individual level, the prevalence of different viruses was: swIAV 48.6%; PRCV 48.0%; PRRSV 31.6%; SOV 33.8%; PCMV 48.3%, PCV2 36.0%; and PCV3 33.0%. Beyond that, it was common to find animals with low Ct values (< 30) for all agents except for PCV2 and PCV3. When analysed the association between different pathogens, PRCV was the one with the most associations. It positively interacted ( p < 0.05) with swIAV and SOV but was negatively associated ( p < 0.05) with PRRSV and PCVM. Besides these, swIAV and PRRSV were negatively related (p < 0.05). Further analysis of suckling pigs showed that circulation of PRCV, PCMV, SOV, and PCV3 started in the maternities, suggesting a role of the sows in the transmission. Overall, our data may contribute to a better understanding of the complex aetiology and the epidemiology of respiratory disease in weaners. This is the first report of SOV in Spain.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 47
Author(s):  
Chiara Chiapponi ◽  
Alice Prosperi ◽  
Ana Moreno ◽  
Laura Baioni ◽  
Silvia Faccini ◽  
...  

Swine play an important role in the ecology of influenza A viruses (IAVs), acting as mixing vessels. Swine (sw) IAVs of H1N1 (including H1N1pdm09), H3N2, and H1N2 subtypes are enzootic in pigs globally, with different geographic distributions. This study investigated the genetic diversity of swIAVs detected during passive surveillance of pig farms in Northern Italy between 2017 and 2020. A total of 672 samples, IAV-positive according to RT-PCR, were subtyped by multiplex RT-PCR. A selection of strains was fully sequenced. High genotypic diversity was detected among the H1N1 and H1N2 strains, while the H3N2 strains showed a stable genetic pattern. The hemagglutinin of the H1Nx swIAVs belonged to HA-1A, HA-1B, and HA-1C lineages. Increasing variability was found in HA-1C strains with the circulation of HA-1C.2, HA-1C.2.1 and HA-1C.2.2 sublineages. Amino acid deletions in the HA-1C receptor binding site were observed and antigenic drift was confirmed. HA-1B strains were mostly represented by the Δ146-147 Italian lineage HA-1B.1.2.2, in combination with the 1990s human-derived NA gene. One antigenic variant cluster in HA-1A strains was identified in 2020. SwIAV circulation in pigs must be monitored continuously since the IAVs’ evolution could generate strains with zoonotic potential.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuhang Sun ◽  
Jinlong Zhang ◽  
Zixuan Liu ◽  
Ying Zhang ◽  
Kehe Huang

Porcine circovirus type 2 (PCV2) is the primary pathogen of porcine circovirus diseases and porcine circovirus associated diseases. Immunization with a vaccine is considered an effective measure to control these diseases. However, it is still unknown whether PCV2 vaccines have protective immune responses on the animals infected with swine influenza virus (SIV), a pandemic virus in swine herds. In this study, we first compared the effects of 2 different PCV2 vaccines on normal mice and SIV-infected mice, respectively. The results showed that these two vaccines had protective immune responses in normal mice, and the subunit vaccine (vaccine S) had better effects. However, the inactivated vaccine (vaccine I) instead of vaccine S exhibited more immune responses in the SIV-infected mice. SIV infection significantly decreased the immune responses of vaccine S in varying aspects including decreased PCV2 antibody levels and increased PCV2 replication. Mechanistically, further studies showed that SIV infection increased IL-10 expression and M2 macrophage percentage, but decreased TNF-α expression and M1 macrophage percentage in the mice immunized with vaccine S; on the contrary, macrophage depleting by using clodronate-containing liposomes significantly alleviated the SIV infection-induced decrease in the protective immune responses of vaccine S against PCV2. This study indicates that SIV infection decreases the protective immune responses of vaccine S against PCV2. The macrophage polarization induced by SIV infection might facilitate decreased immune responses to vaccine S, which provides new insight into vaccine evaluation and a reference for the analysis of immunization failure.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2335
Author(s):  
Lixiang Xie ◽  
Guanlong Xu ◽  
Lingxiang Xin ◽  
Zhaofei Wang ◽  
Rujuan Wu ◽  
...  

Reassortant variant viruses generated between 2009 H1N1 pandemic influenza virus [A(H1N1)pdm09] and endemic swine influenza viruses posed a potential risk to humans. Surprisingly, genetic analysis showed that almost all of these variant viruses contained the M segment from A(H1N1)pdm09, which originated from Eurasian avian-like swine influenza viruses. Studies have shown that the A(H1N1)pdm09 M gene is critical for the transmissibility and pathogenicity of the variant viruses. However, the M gene encodes two proteins, M1 and M2, and which of those plays a more important role in virus pathogenicity remains unknown. In this study, the M1 and M2 genes of A(H1N1)pdm09 were replaced with those of endemic H3N2 swine influenza virus, respectively. The chimeric viruses were rescued and evaluated in vitro and in mice. Both M1 and M2 of H3N2 affected the virus replication in vitro. In mice, the introduction of H3N2 M1 attenuated the chimeric virus, where all the mice survived from the infection, compared with the wild type virus that caused 100 % mortality. However, the chimeric virus containing H3N2 M2 was still virulent to mice, and caused 16.6% mortality, as well as similar body weight loss to the wild type virus infected group. Compared with the wild type virus, the chimeric virus containing H3N2 M1 induced lower levels of inflammatory cytokines and higher levels of anti-inflammatory cytokines, whereas the chimeric virus containing H3N2 M2 induced substantial pro-inflammatory responses, but higher levels of anti-inflammatory cytokines. The study demonstrated that Eurasian avian-like M1 played a more important role than M2 in the pathogenicity of A(H1N1)pdm09 in mice.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1527
Author(s):  
Andreja Jungić ◽  
Vladimir Savić ◽  
Josip Madić ◽  
Ljubo Barbić ◽  
Besi Roić ◽  
...  

In a total of 1536 blood serum samples analysed by ELISA, antibodies for IAV nucleoprotein (NP) were detected in 30.3%. Results from HI show that the most common subtype of swIAV in the Croatian pig population was H1N1 (44.6%), followed by H3N2 (42.7%) and H1N2 (26.3%). Antibodies to at least one subtype were detected in 62.19% of blood serum samples. Detection of swIAV antigen was performed by IHC and detected in 8 of 28 lung samples collected post-mortem. The matrix (M) gene was detected in nine of one hundred and forty-two lung tissue samples and in seven of twenty-nine nasopharyngeal swabs. Phylogenetic analysis of amplified HA and NA gene fragments in Croatian isolates suggests the presence of swIAV H1avN1av.


2021 ◽  
Author(s):  
Ho Fai Chan ◽  
Stephanie M. Rizio ◽  
Ahmed Skali ◽  
Benno Torgler

Vaccination against COVID-19 and other diseases is a pressing public health issue. We hypothesize that a short-term orientation (impatience) – as it heavily discounts the future benefits of actions taken today – leads to lower rates of vaccination. Using a recently constructed, experimentally validated measure of patience, we document four results consistent with our hypothesis. First, patience alone explains a large share (21%) of the global variation in COVID-19 vaccinations across countries as of November 2021 (Study 1a; N = 76). An increase in patience of one S.D. is associated with 12 p.p. larger vaccination rates. Second, using duration models (Study 1b; 4,180 ≤ N ≤ 9,973), we demonstrate that more patient countries are quicker to reach high COVID-19 vaccination thresholds. Third, our results are not specific to the COVID-19 pandemic: in Study 2a, we show that beliefs regarding the safety and effectiveness of vaccination against swine influenza (H1N1) in 2009 are also well-explained by patience in a sample of sub-national regions of Europe (N regions = 138; N countries = 17). Fourth, in Study 2b, we show that our results are not specific to pandemics: patience also explains the global variation in infant vaccinations against 12 common diseases (N = 75).


2021 ◽  
Vol 12 ◽  
Author(s):  
Tiphany Chrun ◽  
Emmanuel A. Maze ◽  
Eleni Vatzia ◽  
Veronica Martini ◽  
Basudev Paudyal ◽  
...  

The porcine respiratory disease complex (PRDC) is responsible for significant economic losses in the pig industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus are major viral contributors to PRDC. Vaccines are cost-effective measures for controlling PRRS, however, their efficacy in the context of co-infections has been poorly investigated. In this study, we aimed to determine the effect of PRRSV-2 and swine influenza H3N2 virus co-infection on the efficacy of PRRSV modified live virus (MLV) vaccination, which is widely used in the field. Following simultaneous challenge with contemporary PRRSV-2 and H3N2 field isolates, we found that the protective effect of PRRS MLV vaccination on clinical disease and pathology was abrogated, although viral load was unaffected and antibody responses were enhanced. In contrast, co-infection in non-immunized animals reduced PRRSV-2 viremia and H3N2 virus load in the upper respiratory tract and potentiated T cell responses against both PRRSV-2 and H3N2 in the lung. Further analysis suggested that an upregulation of inhibitory cytokines gene expression in the lungs of vaccinated pigs may have influenced responses to H3N2 and PRRSV-2. These findings provide important insights into the effect of viral co-infections on PRRS vaccine efficacy that may help identify more effective vaccination strategies against PRDC in the field.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2250
Author(s):  
Susanne Kessler ◽  
Timm C. Harder ◽  
Martin Schwemmle ◽  
Kevin Ciminski

Zoonotic infections of humans with influenza A viruses (IAVs) from animal reservoirs can result in severe disease in individuals and, in rare cases, lead to pandemic outbreaks; this is exemplified by numerous cases of human infection with avian IAVs (AIVs) and the 2009 swine influenza pandemic. In fact, zoonotic transmissions are strongly facilitated by manmade reservoirs that were created through the intensification and industrialization of livestock farming. This can be witnessed by the repeated introduction of IAVs from natural reservoirs of aquatic wild bird metapopulations into swine and poultry, and the accompanied emergence of partially- or fully-adapted human pathogenic viruses. On the other side, human adapted IAV have been (and still are) introduced into livestock by reverse zoonotic transmission. This link to manmade reservoirs was also observed before the 20th century, when horses seemed to have been an important reservoir for IAVs but lost relevance when the populations declined due to increasing industrialization. Therefore, to reduce zoonotic events, it is important to control the spread of IAV within these animal reservoirs, for example with efficient vaccination strategies, but also to critically surveil the different manmade reservoirs to evaluate the emergence of new IAV strains with pandemic potential.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lok R. Joshi ◽  
David Knudsen ◽  
Pablo Piñeyro ◽  
Santosh Dhakal ◽  
Gourapura J. Renukaradhya ◽  
...  

Swine influenza is a highly contagious respiratory disease of pigs caused by influenza A viruses (IAV-S). IAV-S causes significant economic losses to the swine industry and poses challenges to public health given its zoonotic potential. Thus effective IAV-S vaccines are needed and highly desirable and would benefit both animal and human health. Here, we developed two recombinant orf viruses, expressing the hemagglutinin (HA) gene (OV-HA) or the HA and the nucleoprotein (NP) genes of IAV-S (OV-HA-NP). The immunogenicity and protective efficacy of these two recombinant viruses were evaluated in pigs. Both OV-HA and OV-HA-NP recombinants elicited robust virus neutralizing antibody response in pigs, with higher levels of neutralizing antibodies (NA) being detected in OV-HA-NP-immunized animals pre-challenge infection. Although both recombinant viruses elicited IAV-S-specific T-cell responses, the frequency of IAV-S-specific proliferating CD8+ T cells upon re-stimulation was higher in OV-HA-NP-immunized animals than in the OV-HA group. Importantly, IgG1/IgG2 isotype ELISAs revealed that immunization with OV-HA induced Th2-biased immune responses, whereas immunization with OV-HA-NP virus resulted in a Th1-biased immune response. While pigs immunized with either OV-HA or OV-HA-NP were protected when compared to non-immunized controls, immunization with OV-HA-NP resulted in incremental protection against challenge infection as evidenced by a reduced secondary antibody response (NA and HI antibodies) following IAV-S challenge and reduced virus shedding in nasal secretions (lower viral RNA loads and frequency of animals shedding viral RNA and infectious virus), when compared to animals in the OV-HA group. Interestingly, broader cross neutralization activity was also observed in serum of OV-HA-NP-immunized animals against a panel of contemporary IAV-S isolates representing the major genetic clades circulating in swine. This study demonstrates the potential of ORFV-based vector for control of swine influenza virus in swine.


Sign in / Sign up

Export Citation Format

Share Document