Burn-cycle-dependent spatial distribution of nuclear fuel actinides and fission products based on the AGENT code

2021 ◽  
Vol 160 ◽  
pp. 108390
Author(s):  
Brittney L. Saenz ◽  
Tatjana Jevremovic
2021 ◽  
Author(s):  
Xuesong Yan ◽  
Yaling Zhang ◽  
Yucui Gao ◽  
Lei Yang

Abstract To make the nuclear fuel cycle more economical and convenient, as well as prevent nuclear proliferation, the conceptual study of a simple high-temperature dry reprocessing of spent nuclear fuel (SNF) for a ceramic fast reactor is proposed in this paper. This simple high-temperature dry (HT-dry) reprocessing includes the Atomics International Reduction Oxidation (AIROX) process and purification method for rare-earth elements. After removing the part of fission products from SNF by a HT-dry reprocessing without fine separation, the remaining nuclides and some uranium are fabricated into fresh fuel which can be used back to the ceramic fast reactor. Based on the ceramic coolant fast reactor, we studied neutron physics of nuclear fuel cycle which consists operation of ceramic reactor, removing part of fission products from SNF and preparation of fresh fuels for many time. The parameters of the study include effective multiplication factor (Keff), beam density, and nuclide mass for different ways to remove the fission products from SNF. With the increase in burnup time, the trend of increasing 239Pu gradually slows down, and the trend of 235U gradually decreases and become balanced. For multiple removal of part of fission products in the nuclear fuel cycle, the higher the removal, the larger the initial Keff.


1979 ◽  
Vol 23 ◽  
pp. 163-176
Author(s):  
D. C. Camp ◽  
W. D. Ruhter

In the event that nuclear fuel from light water reactors (LWR) is reprocessed to reclaim the uranium or plutonium, several analytical techniques will be used for product accountability. Generally, the isotopic content of both the plutonium and uranium in the reprocessed product will have to be accurately determined. One plan for the reprocessing of LWR spent fuel incorporates the following scheme. After separation from both the fission products and transplutonium actinides (including neptunium and americium), part of the uranium and all of the plutonium in a nitrate solution will merge together to form a coprocessed stream. This solution will be concentrated by evaporation and sent to a hold tank for accountability. Input concentrations into the hold tank could be up to 350 g U/ℓ and nearly 50 g Pu/ℓ. The variation to be expected in these concentrations is not known. The remaining uranium fraction will be further purified and sent to a separate storage tank. Its expected stream concentration will be about 60 g U/ℓ. These two relatively high actinide stream concentrations can be monitored rapidly, quantitatively, and nondestructively using the technique of energy-dispersive x-ray fluorescence analysis(XRFA).


2012 ◽  
Vol 1383 ◽  
Author(s):  
Yang Zhong ◽  
Robert C. O’Brien ◽  
Steven D. Howe ◽  
Nathan D. Jerred ◽  
Kristopher Schwinn ◽  
...  

ABSTRACTThe feasibility of the fabrication of tungsten based nuclear fuel cermets via Spark Plasma Sintering (SPS) is investigated in this work. CeO2 is used to simulate fuel loadings of UO2 or Mixed-Oxide (MOX) fuels within tungsten-based cermets due to the similar properties of these materials. This study shows that after a short time sintering, greater than 90 % density can be achieved, which is suitable to possess good strength as well as the ability to contain fission products. The mechanical properties and the densities of the samples are also investigated as functions of the applied pressures during the sintering.


1996 ◽  
Vol 465 ◽  
Author(s):  
C. W. Forsberg

ABSTRACTA new repository waste package (WP) concept for spent nuclear fuel (SNF) is being investigated. The WP uses depleted uranium (DU) to improve performance and reduce the uncertainties of geological disposal of SNF. The WP would be loaded with SNF. Void spaces would then be filled with DU (∼0.2 wt % 235U) dioxide (UO2) or DU silicate-glass beads.Fission products and actinides can not escape the SNF UO2 crystals until the UO2 dissolves or is transformed into other chemical species. After WP failure, the DU fill material slows dissolution by three mechanisms: (1) saturation of WP groundwater with DU and suppression of SNF dissolution, (2) maintenance of chemically reducing conditions in the WP that minimize SNF solubility by sacrificial oxidation of DU from the +4 valence state, and (3) evolution of DU to lower-density hydrated uranium silicates. The fill expansion minimizes water flow in the degraded WP. The DU also isotopically exchanges with SNF uranium as the SNF degrades to reduce long-term nuclear-criticality concerns.


Sign in / Sign up

Export Citation Format

Share Document