A new method to simulate dispersion plate-type fuel assembly in a multi-physics coupled way

2022 ◽  
Vol 166 ◽  
pp. 108734
Author(s):  
Fengrui Xiang ◽  
Yanan He ◽  
Yuhang Niu ◽  
Chaoqun Deng ◽  
Yingwei Wu ◽  
...  
2014 ◽  
Vol 46 (4) ◽  
pp. 529-540 ◽  
Author(s):  
HYUN-JUNG KIM ◽  
JEONG-SIK YIM ◽  
BYUNG-HO LEE ◽  
JAE-YONG OH ◽  
YOUNG-WOOK TAHK

2013 ◽  
Vol 53 ◽  
pp. 82-89 ◽  
Author(s):  
Tae Young Han ◽  
Chang Je Park ◽  
Byung Chul Lee ◽  
Jae Man Noh

Author(s):  
Lei Li ◽  
Zhijian Zhang

A multi-channel model thermal-hydraulic analysis code in real-time for plate type fuel reactor is developed in this paper. In this code, every fuel assembly in reactor is divided into a subchannel. A series of reasonable mathematical and physical model are set up based on the structure and operational characteristics of plate type fuel core. As for the choice of flow friction and heat transfer models, all possible flow regimes which include the laminar flow, transient flow and turbulent flow, and heat transfer regimes which include single liquid phase heat transfer, sub-cooled boiling, saturation boiling, film boiling and single vapor phase heat transfer, are considered. The correlations and constitutive equations used in the code are fit for the rectangular channel. Look-up table method is used to calculate the properties of water and steam. The code has been loaded on the real-time simulation supporting system SimExec. The reactivity insertion accident and loss of flow accident, which has been defined in the IAEA 10MW MTR benchmark program, were calculated by the code in this paper for validation. Furthermore, the steady state of CARR (China Advanced Research Reactor) is analyzed by this code. The detailed flow distribution in each fuel assembly is obtained. The temperature of coolant, quality, void fraction, DNBR in each subchannel is calculated. The results show that the recently developed code can be used for real time thermal hydraulic analysis of plate type fuel reactor.


2020 ◽  
Vol 148 ◽  
pp. 107750
Author(s):  
Jonghark Park ◽  
Hyung Min Son ◽  
Kiwon Song ◽  
Ragai M. Altamimi

Author(s):  
Soo-sung Kim ◽  
Yong-jin Jeong ◽  
Jong-man Park ◽  
Yoon-sang Lee ◽  
Chong-tak Lee

A procedure for Electron Beam Welding (EBW) was developed for the manufacturing of a follower fuel assembly made of an AA 6061-T6 aluminum straps for a U-Mo plate-type fuel proposed to be used in the future in Korea’s Kijang Research Reactor (KJRR) project. The initial welding trials of the weld samples were carried out with a high vacuum chamber using the EBW process. After investigating the welds, EB welding parameters for the full-sized samples were optimized for the required depth of penetration and weld quality. Subsequently, the weld samples made by the filler specimens showed higher shearing strengths than those of the non-filler specimens. This procedure made by EBW process was also confirmed based on the results of the shearing strength test, an examination of the macro-cross sections, and the fracture surfaces of the welded specimens.


2021 ◽  
Vol 9 ◽  
Author(s):  
Quan Li ◽  
Qiang Ma ◽  
Yuanming Li ◽  
Ping Chen ◽  
Chao Ma ◽  
...  

In nuclear reactors, the research of conjugated heat transfer between the fuel and coolant in the fuel assembly is fundamental for improving the safety, reliability and economy. The numerical approach based on Computational Fluid Dynamics (CFD) can be used to realize the rapid analysis of the conjugated heat transfer. Besides, the numerical simulation can provide detailed physical fields that are useful for the designing and optimizing of the fuel assembly. The plate-type fuels are generally used to enhance heat transfer in research reactors with high power density. In this study, a standard plate-type fuel assembly in the research reactor was taken into consideration. The solid-fluid conjugated heat transfer of the fuel assembly and coolant was numerically investigated. In the fluid region, the subcooled flow boiling simulation model was established by implementing the Rensselaer Polytechnic Institute model into the Euler multi-phase flow method. The results show that the conjugated heat transfer of the fuel assembly and coolant can be simulated using the model established in this work. The influence of fluid velocity, power density and the width of the flow channel on the temperature distribution and the conjugated heat transfer was investigated and discussed.


Sign in / Sign up

Export Citation Format

Share Document