Dynamical interaction between a droplet and a wall heated beyond the Leidenfrost temperature

2022 ◽  
Vol 168 ◽  
pp. 108910
Author(s):  
Rodolfo Ienny Martins ◽  
Maria de Lourdes Moreira ◽  
Jian Su
Author(s):  
Stuart McKernan ◽  
C. Barry Carter

The determination of the absolute polarity of a polar material is often crucial to the understanding of the defects which occur in such materials. Several methods exist by which this determination may be performed. In bulk, single-domain specimens, macroscopic techniques may be used, such as the different etching behavior, using the appropriate etchant, of surfaces with opposite polarity. X-ray measurements under conditions where Friedel’s law (which means that the intensity of reflections from planes of opposite polarity are indistinguishable) breaks down can also be used to determine the absolute polarity of bulk, single-domain specimens. On the microscopic scale, and particularly where antiphase boundaries (APBs), which separate regions of opposite polarity exist, electron microscopic techniques must be employed. Two techniques are commonly practised; the first [1], involves the dynamical interaction of hoLz lines which interfere constructively or destructively with the zero order reflection, depending on the crystal polarity. The crystal polarity can therefore be directly deduced from the relative intensity of these interactions.


2021 ◽  
Vol 503 (1) ◽  
pp. 362-375
Author(s):  
L Korre ◽  
NH Brummell ◽  
P Garaud ◽  
C Guervilly

ABSTRACT Motivated by the dynamics in the deep interiors of many stars, we study the interaction between overshooting convection and the large-scale poloidal fields residing in radiative zones. We have run a suite of 3D Boussinesq numerical calculations in a spherical shell that consists of a convection zone with an underlying stable region that initially compactly contains a dipole field. By varying the strength of the convective driving, we find that, in the less turbulent regime, convection acts as turbulent diffusion that removes the field faster than solely molecular diffusion would do. However, in the more turbulent regime, turbulent pumping becomes more efficient and partially counteracts turbulent diffusion, leading to a local accumulation of the field below the overshoot region. These simulations suggest that dipole fields might be confined in underlying stable regions by highly turbulent convective motions at stellar parameters. The confinement is of large-scale field in an average sense and we show that it is reasonably modelled by mean-field ideas. Our findings are particularly interesting for certain models of the Sun, which require a large-scale, poloidal magnetic field to be confined in the solar radiative zone in order to explain simultaneously the uniform rotation of the latter and the thinness of the solar tachocline.


2019 ◽  
Vol 76 (10) ◽  
pp. 3267-3283 ◽  
Author(s):  
Cheng-Ku Yu ◽  
Che-Yu Lin ◽  
Jhang-Shuo Luo

Abstract This study used radar and surface observations to track a long-lasting outer tropical cyclone rainband (TCR) of Typhoon Jangmi (2008) over a considerable period of time (~10 h) from its formative to mature stage. Detailed analyses of these unique observations indicate that the TCR was initiated on the eastern side of the typhoon at a radial distance of ~190 km as it detached from the upwind segment of a stratiform rainband located close to the inner-core boundary. The outer rainband, as it propagated cyclonically outward, underwent a prominent convective transformation from generally stratiform precipitation during the earlier period to highly organized, convective precipitation during its mature stage. The transformation was accompanied by a clear trend of surface kinematics and thermodynamics toward squall-line-like features. The observed intensification of the rainband was not simply related to the spatial variation of the ambient CAPE or potential instability; instead, the dynamical interaction between the prerainband vertical shear and cold pools, with progression toward increasingly optimal conditions over time, provides a reasonable explanation for the temporal alternation of the precipitation intensity. The increasing intensity of cold pools was suggested to play an essential role in the convective transformation for the rainband. The propagation characteristics of the studied TCR were distinctly different from those of wave disturbances frequently documented within the cores of tropical cyclones; however, they were consistent with the theoretically predicted propagation of convectively generated cold pools. The convective transformation, as documented in the present case, is anticipated to be one of the fundamental processes determining the evolving and structural nature of outer TCRs.


1998 ◽  
Vol 495 (1) ◽  
pp. 468-484 ◽  
Author(s):  
O. Steiner ◽  
U. Grossmann‐Doerth ◽  
M. Knolker ◽  
M. Schussler

2013 ◽  
Vol 44 ◽  
pp. 170-180 ◽  
Author(s):  
P. Dunand ◽  
G. Castanet ◽  
M. Gradeck ◽  
D. Maillet ◽  
F. Lemoine

Sign in / Sign up

Export Citation Format

Share Document