scholarly journals The role of gauge symmetry in spintronics

2011 ◽  
Vol 326 (12) ◽  
pp. 3067-3074 ◽  
Author(s):  
R.F. Sobreiro ◽  
V.J. Vasquez Otoya
Keyword(s):  
2018 ◽  
Vol 27 (14) ◽  
pp. 1847026
Author(s):  
Olaf Hohm

I discuss various aspects of background independence in the context of string theory, for which so far we have no manifestly background independent formulation. After reviewing the role of background independence in classical Einstein gravity, I discuss recent results implying that there is a conflict in string theory between manifest background independence and manifest duality invariance when higher-derivative corrections are included. The resolution of this conflict requires the introduction of new gauge degrees of freedom together with an enlarged gauge symmetry. This suggests more generally that a manifestly background independent and duality invariant formulation of string theory requires significantly enhanced gauge symmetries.


Universe ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 62
Author(s):  
Yongmin Cho

We discuss the importance of the color reflection symmetry of the Abelian decomposition in QCD. The Abelian decomposition breaks up the color gauge field to three parts, the neuron, chromon, and the topological monopole, gauge independently. Moreover, it refines the Feynman diagram in such a way that the conservation of color is explicit. This leads us to generalize the quark model to the quark and chromon model. We show how the Abelian decomposition reduces the non-Abelian color gauge symmetry to the simple discrete 24 element color reflection symmetry which assumes the role of the color gauge symmetry and plays the central role in the quark and chromon model.


Author(s):  
WOJCIECH CHOJNACKI ◽  
MICHAEL J. BROOKS

The paper presents mathematical underpinnings of the locally linear embedding technique for data dimensionality reduction. It is shown that a cogent framework for describing the method is that of optimization on a Grassmann manifold. The solution delivered by the algorithm is characterized as a constrained minimizer for a problem in which the cost function and all the constraints are defined on such a manifold. The role of the internal gauge symmetry in solving the underlying optimization problem is illuminated.


2001 ◽  
Vol 16 (02) ◽  
pp. 53-61 ◽  
Author(s):  
GEORGE TRIANTAPHYLLOU

Heavy mirror fermions along with a new strong gauge interaction capable of breaking the electroweak gauge symmetry dynamically were recently introduced under the name of katoptrons. Their main function is to provide a viable alternative to the Standard-Model Higgs sector. In such a framework, ordinary fermions acquire masses after the breaking of the strong katoptron group which allows mixing with their katoptron partners. The purpose of this letter is to study the elementary-scalars-free mechanism responsible for this breaking and its implications for the fermion mass hierarchies.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Hitomi Kuranaga ◽  
Hiroshi Ohki ◽  
Shohei Uemura

Abstract We study Froggatt-Nielsen (FN) like flavor models with modular symmetry. The FN mechanism is a convincing solution to the flavor puzzle in the quark sector. The FN mechanism requires an extra U(1) gauge symmetry which is broken at high energies. Alternatively, in the framework of modular symmetry the modular weights can play the role of the FN charges of the extra U(1) symmetry. Based on the FN-like mechanism with modular symmetry we present new flavor models for the quark sector. Assuming that the three generations have a common representation under the modular symmetry, our models simply reproduce the FN-like Yukawa matrices. We also show that the realistic mass hierarchy and mixing angles, which are related to each other through the modular parameters and a scalar vev, can be realized in models with several finite modular groups (and their double covering groups) without unnatural hierarchical parameters.


JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

JAMA ◽  
1966 ◽  
Vol 195 (3) ◽  
pp. 167-172 ◽  
Author(s):  
T. E. Van Metre

2018 ◽  
Vol 41 ◽  
Author(s):  
Winnifred R. Louis ◽  
Craig McGarty ◽  
Emma F. Thomas ◽  
Catherine E. Amiot ◽  
Fathali M. Moghaddam

AbstractWhitehouse adapts insights from evolutionary anthropology to interpret extreme self-sacrifice through the concept of identity fusion. The model neglects the role of normative systems in shaping behaviors, especially in relation to violent extremism. In peaceful groups, increasing fusion will actually decrease extremism. Groups collectively appraise threats and opportunities, actively debate action options, and rarely choose violence toward self or others.


Sign in / Sign up

Export Citation Format

Share Document