scholarly journals The role of quantum recurrence in superconductivity, carbon nanotubes and related gauge symmetry breaking

2014 ◽  
Vol 44 (9) ◽  
pp. 905-922 ◽  
Author(s):  
Donatello Dolce ◽  
Andrea Perali
2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


Carbon Trends ◽  
2021 ◽  
Vol 3 ◽  
pp. 100026
Author(s):  
Marcelo Eising ◽  
Colin O'Callaghan ◽  
Carlos Eduardo Cava ◽  
Ariane Schmidt ◽  
Aldo José Gorgatti Zarbin ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
V. Vadimov ◽  
T. Hyart ◽  
J. L. Lado ◽  
M. Möttönen ◽  
T. Ala-Nissila

2001 ◽  
Vol 16 (13) ◽  
pp. 835-844
Author(s):  
ILIA GOGOLADZE ◽  
MIRIAN TSULAIA

We suggest a new mechanism for electroweak symmetry breaking in the supersymmetric Standard Model. Our suggestion is based on the presence of an anomalous U (1)A gauge symmetry, which naturally arises in the four-dimensional superstring theory, and heavily relies on the value of the corresponding Fayet–Illiopoulos ξ-term.


2012 ◽  
Vol 27 (26) ◽  
pp. 1250156 ◽  
Author(s):  
A. DOFF ◽  
A. A. NATALE

The gauge symmetry breaking in some versions of 3-3-1 models can be implemented dynamically because at the scale of a few TeVs the U(1)X coupling constant becomes strong. In this work, we consider the dynamical symmetry breaking in a minimal SU(3) TC × SU(3)L × U(1)X model, where we propose a new scheme to cancel the chiral anomalies, including two-index symmetric (6) technifermions, which incorporates naturally the walking behavior in the Technicolor (TC) sector. The composite scalar content of the model is minimal and all the symmetry breaking is implemented by a multiplet of technifermions. The choice of TC representations not only provides the anomaly cancelation with a walking behavior, but is crucial to promote the model's full dynamical symmetry breaking. We consider the dynamical generation of technigluon masses and, depending on the 3-3-1 symmetry breaking scale (μ331), we verify that the technigluon mass is strongly linked to the Z′ mass scale, for instance, if μ331 = 1 TeV , we have MZ′ > 1 TeV only if M TG < 350 GeV .


1997 ◽  
Vol 56 (20) ◽  
pp. 12947-12960 ◽  
Author(s):  
A. Zawadowski ◽  
G. Zaránd ◽  
P. Nozières ◽  
K. Vladár ◽  
G. T. Zimányi

Sign in / Sign up

Export Citation Format

Share Document