scholarly journals Temperature-programmed reduction of nickel steam reforming catalyst with glucose

2016 ◽  
Vol 527 ◽  
pp. 1-8 ◽  
Author(s):  
Feng Cheng ◽  
Valerie Dupont ◽  
Martyn V. Twigg
Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 518 ◽  
Author(s):  
Qinwei Yu ◽  
Yi Jiao ◽  
Weiqiang Wang ◽  
Yongmei Du ◽  
Chunying Li ◽  
...  

Co-Ni bi-metallic catalysts supported on Ce-Al2O3 (CA) were prepared with different Co ratios, and the catalytic behaviors were assessed in the n-decane steam reforming reaction with the purpose of obtaining high H2 yield with lower inactivation by carbon deposition. Physicochemical characteristics studies, involving N2 adsorption-desorption, X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR), NH3 temperature programmed reduction (NH3-TPD), SEM-energy dispersive spectrometer (EDS), and transmission electron microscope (TEM)/HRTEM, were performed to reveal the textural, structural and morphological properties of the catalysts. Activity test indicated that the addition of moderate Co can improve the hydrogen selectivity and anti-coking ability compared with the mono-Ni/Ce-Al2O3 contrast catalyst. In addition, 12% Co showed the best catalytic activity in the series Co-Ni/Ce-Al2O3 catalysts. The results of catalysts characterizations of XRD and N2 adsorption-desorption manifesting the metal-support interactions were significantly enhanced, and there was obvious synergistic effect between Ni and Co. Moreover, the introduction of 12% Co and 6% Ni did not exceed the monolayer saturation capacity of the Ce-Al2O3 support. Finally, 6 h stability test for the optimal catalyst 12%Co-Ni/Ce-Al2O3 demonstrated that the catalyst has good long-term stability to provide high hydrogen selectivity, as well as good resistance to coke deposition.


2020 ◽  
Vol 20 (6) ◽  
pp. 473-484
Author(s):  
D. V. Andreev ◽  
E. E. Sergeev

Novel catalysts with the composition Cd-(Zn)/TiO2 and Cu-(Zn)/TiO2 containing nanodispersed titanium(IV) oxide were synthesized and characterized using X-ray diffraction analysis, low-temperature nitrogen adsorption and temperature-programmed reduction in hydrogen. Activity of the synthesized catalysts toward steam reforming of methanol was studied in a microchannel reactor. The highest activity was observed for the Cd-containing catalysts; in addition, they showed the lowest selectivity to carbon monoxide. The catalytic and physicochemical properties of the tested catalysts were compared. A correlation was found between activity of the catalysts and their ability to partial hydrogen reduction of Ti4+ cations to Ti3+ in the TiO2 support. Supposedly, the ability to reduce titanium cations depends on semiconductor properties of the oxides in the catalyst.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1066 ◽  
Author(s):  
Bogdan Samojeden ◽  
Marta Kamienowska ◽  
Armando Izquierdo Colorado ◽  
Maria Elena Galvez ◽  
Ilona Kolebuk ◽  
...  

Cenospheres from coal fly ashes were used as support in the preparation of Ni–Mg catalysts for dry reforming of methane. These materials were characterized by means of XRD, H2-temperature-programmed reduction (H2-TPR), CO2-temperature-programmed desorption (CO2-TPD), and low-temperature nitrogen sorption techniques. The cenosphere-supported catalysts showed relatively high activity and good stability in the dry reforming of methane (DRM) at 700 °C. The catalytic performance of modified cenospheres was found to depend on both Ni and Mg content. The highest activity at 750 °C and 1 atm was observed for the catalyst containing 30 wt % Mg and 10, 20, and 30 wt % Ni, yielding to CO2 and CH4 conversions of around 95%.


1982 ◽  
Vol 21 (3) ◽  
pp. 295-298 ◽  
Author(s):  
T. Paryjczak ◽  
J. Rynkowski ◽  
K. Krzyzanowski

2007 ◽  
Vol 124-126 ◽  
pp. 1765-1768 ◽  
Author(s):  
So Yeon Lee ◽  
Yong Kul Lee ◽  
S.Ted Oyama ◽  
Seok Hee Lee ◽  
Hee Chul Woo

Silica supported nickel molybdenum phosphides (NiMoP/SiO2) were successfully prepared by temperature-programmed reduction (TPR) reaction of phosphorous-impregnated nickel molybdenum oxides (NiMoO4) precursors with hydrogen at relatively low temperatures (530 – 590 oC) and characterized by Fourier transform-Infrared spectrometry (FT-IR), X-ray diffraction (XRD), Electron probe microanalysis (EPMA) and Temperature-programmed reduction reaction (TPR). The process of solid transformation and properties of materials prepared from ammonium hydrogen phosphate (AMP)-impregnated samples were compared with those of phosphide made from phosphoric acid (PAC)-impregnated samples. Results show that the formation of a single NiMoP phase on silica significantly depends on reduction rates, phosphorous sources and phosphorous loadings. A single phase of NiMoP on SiO2 was particularly promoted at a below 5 oC/min of reduction rate and the starting molar ratio of Ni/Mo/P=1/1/1. A single phase of crystalline NiMoP on silica was produced from AMP-impregnated samples, while other phases of MoP, Ni2P, or NiMoP2 were appeared from PAC-impregnated samples with loading. The new phase of NiMoP2 was occurred with increasing phosphorous loading (above Ni/Mo/P=1/1/2.5) as a result of facilitated contact on the surface between the Ni-Mo bimetallic component and the phosphorous reagent


Sign in / Sign up

Export Citation Format

Share Document