Catalytic dry reforming of methane over high surface area ceria

2005 ◽  
Vol 60 (1-2) ◽  
pp. 107-116 ◽  
Author(s):  
N. Laosiripojana ◽  
S. Assabumrungrat
RSC Advances ◽  
2014 ◽  
Vol 4 (93) ◽  
pp. 51184-51193 ◽  
Author(s):  
Qing Zhang ◽  
Tao Wu ◽  
Peng Zhang ◽  
Ruijuan Qi ◽  
Rong Huang ◽  
...  

Hierarchical Ni/Al2O3 nanocomposite possesses a high surface area, high loading of well dispersed metal nanoparticles, and a hierarchical hollow structure. The strong interaction between metal and support and the large open accessible surface lead to excellent sintering and carbon resistance, and superior catalytic performance in methane dry reforming.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1220
Author(s):  
Linghui Lyu ◽  
Yunxing Han ◽  
Qingxiang Ma ◽  
Shengene Makpal ◽  
Jian Sun ◽  
...  

Dry reforming of methane (DRM) can effectively convert two greenhouse gases into high-valued chemicals, in which the syngas produced by the reaction can be directly used as raw gases for Fischer–Tropsch synthesis and methanol synthesis. Ni-based catalysts for the DRM reaction with comparable initial activity to noble metals are the focus of most researchers, but their poor carbon deposition resistance easily causes their low stability. More importantly, the nickel loading will affect the catalytic activity and carbon deposition resistance of the catalyst. Herein, a series of Ni/Al2O3 catalysts with bimodal pores was prepared and characterized by X-ray diffraction (XRD), N2 physical adsorption–desorption, H2-temperature programmed reduction (H2-TPR), temperature programmed hydrogenation (TPH), Raman, and thermogravimetric analysis (TG). The results show that the interesting bimodal structure catalysts could provide a high surface area and contribute to the mass transfer. Besides, the catalytic performance of the DRM reaction is sensitive to nickel loadings. In this study, the Ni/Al2O3 catalyst with nickel loadings of 6% and 8% exhibited excellent catalytic activity and carbon deposition resistance. These findings will provide a new strategy to design a highly efficient and stable heterogeneous catalyst for industry.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Oscar Daoura ◽  
◽  
Maya Boutros ◽  
Franck Launay ◽  

CO2 reforming of CH4, also referred to as the Dry Reforming of Methane (DRM), is considered an excellent method to produce H2 and CO (syngas), which are known to be used for the production of higher alkanes and oxygenates. Despite nickel’s moderate toxicity, Ni-based heterogeneous catalysts are considered excellent candidates for use in DRM due to their reasonable performances and economic advantages. However, these materials also present severe drawbacks, such as sintering of the active phase and coke (carbon) deposition, which may, in certain cases, lead to severe catalyst deactivation. Several synthesis strategies, mostly based on the stabilization of nickel through oxide support, have been developed to overcome these issues. Silica-based materials are investigated widely due to their availability, high surface area, and the confinement capacity conferred by their controlled porosity. The present review summarizes the progress in the design of Ni/silica-based catalysts for the dry reforming of methane between the years 2015 and 2018. The different strategies implemented are discussed to assist future research works in designing the anti-coking and anti-sintering nickel-silica-based catalysts.


Author(s):  
Kailun Yang ◽  
Recep Kas ◽  
Wilson A. Smith

<p>This study evaluated the performance of the commonly used strong buffer electrolytes, i.e. phosphate buffers, during CO<sub>2</sub> electroreduction in neutral pH conditions by using in-situ surface enhanced infrared absorption spectroscopy (SEIRAS). Unfortunately, the buffers break down a lot faster than anticipated which has serious implications on many studies in the literature such as selectivity and kinetic analysis of the electrocatalysts. Increasing electrolyte concentration, surprisingly, did not extend the potential window of the phosphate buffers due to dramatic increase in hydrogen evolution reaction. Even high concentration phosphate buffers (1 M) break down within the potentials (-1 V vs RHE) where hydrocarbons are formed on copper electrodes. We have extended the discussion to high surface area electrodes by evaluating electrodes composed of copper nanowires. We would like highlight that it is not possible to cope with high local current densities on these high surface area electrodes by using high buffer capacity solutions and the CO<sub>2</sub> electrocatalysts are needed to be evaluated by casting thin nanoparticle films onto inert substrates as commonly employed in fuel cell reactions and up to now scarcely employed in CO<sub>2</sub> electroreduction. In addition, we underscore that normalization of the electrocatalytic activity to the electrochemical active surface area is not the ultimate solution due to concentration gradient along the catalyst layer.This will “underestimate” the activity of high surface electrocatalyst and the degree of underestimation will depend on the thickness, porosity and morphology of the catalyst layer. </p> <p> </p>


Nanoscale ◽  
2015 ◽  
Vol 7 (25) ◽  
pp. 10974-10981 ◽  
Author(s):  
Xiulin Yang ◽  
Ang-Yu Lu ◽  
Yihan Zhu ◽  
Shixiong Min ◽  
Mohamed Nejib Hedhili ◽  
...  

High surface area FeP nanosheets on a carbon cloth were prepared by gas phase phosphidation of electroplated FeOOH, which exhibit exceptionally high catalytic efficiency and stability for hydrogen generation.


Author(s):  
Sisir Maity ◽  
Dheeraj Kumar Singh ◽  
Divya Bhutani ◽  
Suchitra Prasad ◽  
Umesh V. Waghmare ◽  
...  

MethodsX ◽  
2021 ◽  
pp. 101464
Author(s):  
Yichen Wu ◽  
Nan Zhang ◽  
Charles-François de Lannoy

2021 ◽  
Author(s):  
Gurwinder Singh ◽  
Rohan Bahadur ◽  
Ajanya Maria Ruban ◽  
Jefrin Marykala Davidraj ◽  
Dawei Su ◽  
...  

Nanoporous biocarbons derived from waste biomass have created significant attention owing to their great potential for energy storage and conversion and water purification. However, the fabrication technology for these materials...


Sign in / Sign up

Export Citation Format

Share Document