Aerobic oxidative desulfurization of model diesel using a B-type Anderson catalyst [(C18H37)2N(CH3)2]3Co(OH)6Mo6O18·3H2O

2013 ◽  
Vol 138-139 ◽  
pp. 79-83 ◽  
Author(s):  
Hongying Lü ◽  
Wanzhong Ren ◽  
Weiping Liao ◽  
Wei Chen ◽  
Yang Li ◽  
...  
2019 ◽  
Vol 149 (7) ◽  
pp. 1888-1893 ◽  
Author(s):  
Lulu Sun ◽  
Ting Su ◽  
Pengcheng Li ◽  
Jiajia Xu ◽  
Naimeng Chen ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2404
Author(s):  
Fátima Mirante ◽  
Ricardo F. Mendes ◽  
Rui G. Faria ◽  
Luís Cunha-Silva ◽  
Filipe A. Almeida Paz ◽  
...  

The application of a catalytic membrane in the oxidative desulfurization of a multicomponent model diesel formed by most refractory sulfur compounds present in fuel is reported here for the first time. The catalytic membrane was prepared by the impregnation of the active lamellar [Gd(H4nmp)(H2O)2]Cl·2H2O (UAV-59) coordination polymer (CP) into a polymethyl methacrylate (PMMA, acrylic glass) supporting membrane. The use of the catalytic membrane in the liquid–liquid system instead of a powder catalyst arises as an enormous advantage associated with the facility of catalyst handling while avoiding catalyst mass loss. The optimization of various parameters allowed to achieve a near complete desulfurization after 3 h under sustainable conditions, i.e., using an aqueous H2O2 as oxidant and an ionic liquid as extraction solvent ([BMIM]PF6, 1:0.5 ratio diesel:[BMIM]PF6). The performance of the catalytic membrane and of the powdered UAV-59 catalyst was comparable, with the advantage that the former could be recycled successfully for a higher number of desulfurization cycles without the need of washing and drying procedures between reaction cycles, turning the catalytic membrane process more cost-efficient and suitable for future industrial application.


2020 ◽  
Vol 1010 ◽  
pp. 418-423
Author(s):  
Nor Atiq Syakila Mohd Nazmi ◽  
Wan Nazwanie Wan Abdullah ◽  
Farook Adam ◽  
Wan Nur Aini Wan Mokhtar ◽  
Noor Fatimah Yahaya ◽  
...  

— The catalytic oxidative desulfurization (Cat-ODS) process has been introduced as a new technology to achieve ultra-low sulphur levels in diesel fuels. In this study, the performance of the alumina supported iron oxide based catalysts doped with cobalt, synthesized via wet impregnation method on the Cat-ODS of the model diesel with the total sulphur 500ppm was investigated using tert-butyl hydroperoxide (TBHP) as an oxidizing agent and N,N-dimethylformamide as an extraction solvent. A series of dopant was being screened. Co/Fe-Al2O3 (10:90) and Co/Fe-Al2O3 (20:80) prepared at 400°C. Overall, the catalytic activity decreased as dopant ratio increased. Catalyst with 10 wt% of Co was successfully removed 96% of thiophene, 100% of DBT and 92% of 4,6-DMDBT in model diesel. Further investigation, potential catalyst that calcined at 400°C contributed higher sulphur removal compared to the catalyst calcined at 500°C. X-ray diffraction analysis (XRD) result showed that Co/Fe-Al2O3 (10:90) prepared at 400°C was amorphous, while micrograph of the field emission scanning electron microscopy (FESEM) illustrated an inhomogeneous distribution of various particle sizes. The energy dispersive X-ray analysis (EDX) result have confirmed the presence of Fe and Co in all of the prepared catalyst.


2014 ◽  
Vol 54 (4) ◽  
pp. 316-322 ◽  
Author(s):  
E. V. Rakhmanov ◽  
S. V. Baranova ◽  
Zixiao Wang ◽  
A. V. Tarakanova ◽  
S. V. Kardashev ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5494
Author(s):  
Yan Gao ◽  
Fátima Mirante ◽  
Baltazar de Castro ◽  
Jianshe Zhao ◽  
Luís Cunha-Silva ◽  
...  

A peroxotungstate composite comprising the chromium terephthalate metal–organic framework MIL-101(Cr) and the Venturello peroxotungstate [PO4{WO(O2)2}4]3− (PW4) has been prepared by the impregnation method. The PW4@MIL-101(Cr) composite presents high catalytic efficiency for oxidative desulfurization of a multicomponent model diesel containing the most refractory sulfur compounds present in real fuels (2000 ppm of total S). The catalytic performance of this heterogeneous catalyst is similar to the corresponding homogeneous PW4 active center. Desulfurization efficiency of 99.7% was achieved after only 40 min at 70 °C using H2O2 as an oxidant and an ionic liquid as an extraction solvent ([BMIM]PF6, 2:1 model diesel/[BMIM]PF6). High recycling and reusing capacity was also found for PW4@MIL-101(Cr), maintaining its activity for consecutive oxidative desulfurization cycles. A comparison of the catalytic performance of this peroxotungstate composite with others previously reported tungstate@MIL-101(Cr) catalysts indicates that the presence of active oxygen atoms from the peroxo groups promotes a higher oxidative catalytic efficiency in a shorter reaction time.


2014 ◽  
Vol 16 (1) ◽  
pp. 211-220 ◽  
Author(s):  
Wei Zhang ◽  
Hong Zhang ◽  
Jing Xiao ◽  
Zhenxia Zhao ◽  
Moxin Yu ◽  
...  

2016 ◽  
Vol 103 ◽  
pp. 202-206 ◽  
Author(s):  
Dunja Margeta ◽  
Katica Sertić-Bionda ◽  
Lucija Foglar

Sign in / Sign up

Export Citation Format

Share Document