NOx emission and thermal efficiency of a 300MWe utility boiler retrofitted by air staging

2009 ◽  
Vol 86 (9) ◽  
pp. 1797-1803 ◽  
Author(s):  
Sen Li ◽  
Tongmo Xu ◽  
Shien Hui ◽  
Xiaolin Wei
2013 ◽  
Vol 27 (10) ◽  
pp. 5831-5840 ◽  
Author(s):  
Hu Liu ◽  
Yinhe Liu ◽  
Guangzhou Yi ◽  
Li Nie ◽  
Defu Che

2011 ◽  
Vol 88 (7) ◽  
pp. 2400-2406 ◽  
Author(s):  
Zhengqi Li ◽  
Guangkui Liu ◽  
Qunyi Zhu ◽  
Zhichao Chen ◽  
Feng Ren

Author(s):  
P.S. Kumar ◽  
S.A. Kannan ◽  
A. Kumar ◽  
K.A.V. Geethan

In this study, for the first time analysis of a low heat rejection engine was carried out along with the addition of oxidation inhibitors. If the combustion chamber components of the engine such as piston, cylinder head, and inlet and outlet valves are insulated with a thermal barrier material, then the engine will be referred as low heat rejection engine. In this study yttria stabilized zirconia was coated on the combustion chamber components for a thickness of about 150 microns. Then the analysis of performance parameters such as brake thermal efficiency and specific fuel consumption and emission characteristics such as emission of carbon monoxide, hydrocarbon and nitrogen oxide was carried out in single cylinder four stroke diesel engine with electrical loading using diesel and pongamia methyl ester as the fuels. The major problem associated with the usage of biodiesels and low heat rejection engine is the increased NOX emission than the normal engine operated with the diesel. This problem has been overcome by the usage of oxidation inhibitors such as ethyl hexyl nitrate (EHN), tert-butyl hydroquinone (TBHQ). The results showed that addition of oxidation inhibitors leads to increase in brake thermal efficiency, reduced specific fuel consumption and reduced NOX emission.


2013 ◽  
Vol 680 ◽  
pp. 289-294
Author(s):  
Heng Wen Zhang ◽  
Shuo Dong ◽  
Fang Yang

In order to improve identification of new products, we study the energy efficiency test of utility boilers. According to related protocols and test method of the current boiler energy efficiency, we build up the model of boiler thermal efficiency test in direct and indirect procedure. During the procedure, we analysis some key issues such as the blended fuel problem and the desulfurizer’s effect on energy efficiency. On this basis, we develop the Utility Boiler Thermal Efficiency Test System, which is used in boiler industry and achieves the intended purpose.


Author(s):  
Satoru Goto ◽  
Sadao Nakayama ◽  
Yoshiharu Ono ◽  
Yoshifumi Nishi

Abstract Lean-burn gas engines are operating worldwide because of having an advantage of lower NOx emission and higher thermal efficiency than those of stoichiometric gas engines. The modern lean-burn gas engines, especially medium and large size, have the pre-combustion chamber technology. On the contrary, there are some problems that originate in the spark plug. Particularly near the ignition plug located in the center, the fuel gas density is lean, affected by the lean-gas mixture coming from the main combustion chamber during the compression stroke and the fuel gas density near the wall is rich. The lifetime of ignition plug is likely to be shorter than those used in the conventional theoretical mixture gas combustion engine, because the required voltage for the plug is high, which reaches 20–25 kV or more. The authors and their colleagues have studied a combustion method of using micro-pilot fuel oil instead of spark plug as an ignition source in recent four years to provide a solution for the above mentioned technical problems. The energy of micro-pilot fuel oil is equivalent to 1% of the total thermal input, but the energy of the pilot fuel oil is several thousands times of the spark ignition. According to the author’s study, NOx emission level is defined by the amount of pilot fuel oil. But only about 1% fuel can meet the NOx target. NOx emission level meets TA-Luft of 500 mg/m3N @ 5% O2. Even the regulation of 200 ppm @ 0% O2 in the Japanese large cities can be achieved, this level is almost corresponding to the half TA-Luft. This paper describes the performance being desired for gas engines through the service-experience in co-generation fields and also describes the newly developed gas engine corresponding to a 1000 kW class, which has micro-pilot fuel oil ignition method. This engine has the same performance of a diesel engine, BMEP of 2.3 MPa and brake thermal efficiency of 43%.


Author(s):  
Stefano Cocchi ◽  
Michele Provenzale ◽  
Gianni Ceccherini

An experimental test campaign, aimed to provide a preliminary assessment of the fuel flexibility of small power gas turbines equipped with Dry Low NOx (DLN) combustion systems, has been carried over a full-scale GE10 prototypical unit, located at the Nuovo-Pignone manufacturing site, in Florence. Such activity is a follow-up of a previous experimental campaign, performed on the same engine, but equipped with a diffusive combustion system. The engine is a single shaft, simple cycle gas turbine designed for power generation applications, rated for 11 MW electrical power and equipped with a DLN silos type combustor. One of the peculiar features of such combustion system is the presence of a device for primary combustion air staging, in order to control flame temperature. A variable composition gaseous fuel mixture has been obtained by mixing natural gas with CO2 up to about 30% vol. inerts concentration. Tests have been carried over without any modification of the default hardware configuration. Tests performed aimed to investigate both ignition limits and combustors’ performances, focusing on hot parts’ temperatures, pollutant emissions and combustion driven pressure oscillations. Results indicate that ignition is possible up to 20% vol. inerts concentration in the fuel, keeping the fuel flow during ignition at moderately low levels. Beyond 20% vol. inerts, ignition is still possible increasing fuel flow and adjusting primary air staging, but more tests are necessary to increase confidence in defining optimal and critical values. Speed ramps and load operation have been successfully tested up to 30% vol. inerts concentration. As far as speed ramps, the only issue evidenced has been risk of flameout, successfully abated by rescheduling combustion air staging. As far as load operation, the combustion system has proven to be almost insensitive to any inerts concentration tested (up to 30% vol.): the only parameter significantly affected by variation in CO2 concentration has been NOx emission. As a complementary activity, a simplified zero-dimensional model for predicting NOx emission has been developed, accounting for fuel dilution with CO2. The model is based on main turbine cycle and DLN combustion system controlling parameters (i.e., compressor pressure ratio, firing temperature, pilot fuel and primary air staging), and has been tuned achieving good agreement with data collected during the test campaign.


Sign in / Sign up

Export Citation Format

Share Document