Influence of various air-staging on combustion and NOX emission characteristics in a tangentially fired boiler under the 50% load condition

Energy ◽  
2022 ◽  
pp. 123167
Author(s):  
Yu Jiang ◽  
Byoung-Hwa Lee ◽  
Dong-Hun Oh ◽  
Chung-Hwan Jeon
2013 ◽  
Vol 27 (10) ◽  
pp. 5831-5840 ◽  
Author(s):  
Hu Liu ◽  
Yinhe Liu ◽  
Guangzhou Yi ◽  
Li Nie ◽  
Defu Che

2012 ◽  
Vol 512-515 ◽  
pp. 2135-2142 ◽  
Author(s):  
Yu Peng Wu ◽  
Zhi Yong Wen ◽  
Yue Liang Shen ◽  
Qing Yan Fang ◽  
Cheng Zhang ◽  
...  

A computational fluid dynamics (CFD) model of a 600 MW opposed swirling coal-fired utility boiler has been established. The chemical percolation devolatilization (CPD) model, instead of an empirical method, has been adapted to predict the nitrogen release during the devolatilization. The current CFD model has been validated by comparing the simulated results with the experimental data obtained from the boiler for case study. The validated CFD model is then applied to study the effects of ratio of over fire air (OFA) on the combustion and nitrogen oxides (NOx) emission characteristics. It is found that, with increasing the ratio of OFA, the carbon content in fly ash increases linearly, and the NOx emission reduces largely. The OFA ratio of 30% is optimal for both high burnout of pulverized coal and low NOx emission. The present study provides helpful information for understanding and optimizing the combustion of the studied boiler


2014 ◽  
Vol 592-594 ◽  
pp. 1632-1637
Author(s):  
Ramalingam Senthil ◽  
C. Paramasivam ◽  
Rajendran Silambarasan

Nerium methyl ester, an esterified biofuel, has an excellent cetane number and a reasonable calorific value. It closely resembles the behaviour of diesel. However, being a fuel of different origin, the standard design limits of a diesel engine is not suitable for Nerium methyl ester (NME). Therefore, in this work, a set of design and operational parameters are studied to find out the optimum performance of Nerium methyl ester run diesel engine. This work targets at finding the effects of the engine design parameter viz. fuel injection pressure (IP) on the performance with regard to specific fuel consumption (SFC), brake thermal efficiency (BTHE) and emissions of CO, CO2, HC, NOxwith N20 as fuel. Comparison of performance and emission was done for different values of injection pressure to find best possible condition for operating engine with NME. For small sized direct injection constant speed engines used for agricultural applications, the optimum injection pressure was found as 240bar.Methyl esters from Nerium, with properties close to diesel; show better performance and emission characteristics. Hence Nerium (N20) blend can be used in existing diesel engines without compromising the engine performance. Diesel (25%) thus saved will greatly help the interests of railways in meeting the demand for fuel,as diesel trains are operated at maximum load condition.


2012 ◽  
Vol 512-515 ◽  
pp. 1888-1891
Author(s):  
Jia Yi Du ◽  
Wei Xun Zhang ◽  
Deng Pan Zhang ◽  
Zhen Yu Sun

The influence of cetane number improver on emission characteristics of diesel engine fueled with methanol/diesel blend fuel was investigated. Methanol/diesel blend fuel was prepared, in which the methanol content is 10%, different mass fraction (0%,0.5%) of cetane number improver were added to the blend fuel. Load characteristic experiments at maximum torque speed of the engine were carried out on 4B26 direct injection diesel engine. The results show that, compared with the engine fueled with diesel, the CO emission increases under low loads and reduces under medium and high loads, the HC emission increases, the NOx emission decreases under medium and low loads and increases under high loads, the soot emission reduces significantly when the diesel engine fueled with blends. When cetane number improver was added to blends, the CO and NOx emission reduces, the HC emission decreases, the soot emission increases to some extent compared with the methanol/dieselblend fuel without cetane number improver.


2018 ◽  
Vol 199 ◽  
pp. 400-410 ◽  
Author(s):  
Imran Ali Shah ◽  
Xiang Gou ◽  
Qiyan Zhang ◽  
Jinxiang Wu ◽  
Enyu Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document