scholarly journals Experimental investigation of butanol isomer combustion in Homogeneous Charge Compression Ignition (HCCI) engines

2016 ◽  
Vol 165 ◽  
pp. 612-626 ◽  
Author(s):  
J. Hunter Mack ◽  
Daniel Schuler ◽  
Ryan H. Butt ◽  
Robert W. Dibble
2005 ◽  
Vol 128 (1) ◽  
pp. 16-27 ◽  
Author(s):  
Salvador M. Aceves ◽  
Joel Martinez-Frias ◽  
Gordon M. Reistad

This paper presents an evaluation of the applicability of homogeneous charge compression ignition (HCCI) engines for small-scale cogeneration (<1MWe) in comparison to five previously analyzed prime movers. The five comparator prime movers include stoichiometric spark-ignited (SI) engines, lean burn SI engines, diesel engines, microturbines, and fuel cells. The investigated option, HCCI engines, is a relatively new type of engine that has some fundamental differences with respect to other prime movers. The prime movers are compared by calculating electric and heating efficiency, fuel consumption, nitrogen oxide (NOx) emissions, and capital and fuel costs. Two cases are analyzed. In case 1, the cogeneration facility requires combined power and heating. In case 2, the requirement is for power and chilling. The results show that HCCI engines closely approach the very high fuel utilization efficiency of diesel engines without the high emissions of NOx and the expensive diesel fuel. HCCI engines offer a new alternative for cogeneration that provides a combination of low cost, high efficiency, low emissions, and flexibility in operating temperatures that can be optimally tuned for cogeneration systems. HCCI is the most efficient engine technology that meets the strict 2007 CARB NOx standards for cogeneration engines, and merits more detailed analysis and experimental demonstration.


The homogeneous charge compression ignition (HCCI) engine is the promising technology to reduce the pollutants without affecting its performance and it is also proved by the many studies. This study investigates the performance and emission characteristics of HCCI engine fuelled with diesel –waste cooking oil (WCO) blends and also analysed the effect of air temperature and fuel properties on HCCI engine combustion. The experimental investigation was conducted with single cylinder DI diesel engine and it was slightly modified to port injection system for premixing the charge. The electric air heater was adopted in suction pipe to preheat the inlet air. The experimental investigation conducted in two phases, in the first phase the conventional DI diesel engine was tested with different fuel blends such as B25, B50, B75 and B100 and notes the readings. In the next phase, HCCI engine was operated with same blend ratios. During the experimentation on HCCI engine, the suction air temperature was varied between 40⁰C to 90⁰C. From the experimental results, it was found that the HCCI engine has emitted low NOx and smoke emissions at 80⁰C of air temperature for all the blends. Whereas the HCCI engine emitted more carbon monoxide (CO) and hydrocarbon (HC) emissions due to lean mixture causes misfiring in the chamber. In addition, it is also noted that the value of CO and HC has been varied with diesel –WCO blends. The specific fuel consumption (SFC) is increased for diesel and biodiesel fuel in HCCI engine compared to compression ignition (CI) engine


Sign in / Sign up

Export Citation Format

Share Document