scholarly journals Experimental Investigation of Intake Diesel Aerosol Fuel Homogeneous Charge Compression Ignition (HCCI) Engine Combustion and Emissions

2014 ◽  
Vol 06 (14) ◽  
pp. 513-526 ◽  
Author(s):  
Medhat Elkelawy

The homogeneous charge compression ignition (HCCI) engine is the promising technology to reduce the pollutants without affecting its performance and it is also proved by the many studies. This study investigates the performance and emission characteristics of HCCI engine fuelled with diesel –waste cooking oil (WCO) blends and also analysed the effect of air temperature and fuel properties on HCCI engine combustion. The experimental investigation was conducted with single cylinder DI diesel engine and it was slightly modified to port injection system for premixing the charge. The electric air heater was adopted in suction pipe to preheat the inlet air. The experimental investigation conducted in two phases, in the first phase the conventional DI diesel engine was tested with different fuel blends such as B25, B50, B75 and B100 and notes the readings. In the next phase, HCCI engine was operated with same blend ratios. During the experimentation on HCCI engine, the suction air temperature was varied between 40⁰C to 90⁰C. From the experimental results, it was found that the HCCI engine has emitted low NOx and smoke emissions at 80⁰C of air temperature for all the blends. Whereas the HCCI engine emitted more carbon monoxide (CO) and hydrocarbon (HC) emissions due to lean mixture causes misfiring in the chamber. In addition, it is also noted that the value of CO and HC has been varied with diesel –WCO blends. The specific fuel consumption (SFC) is increased for diesel and biodiesel fuel in HCCI engine compared to compression ignition (CI) engine


2008 ◽  
Vol 9 (5) ◽  
pp. 399-408 ◽  
Author(s):  
T Shudo

A homogeneous charge compression ignition (HCCI) engine system fuelled with dimethyl ether (DME) and methanol-reformed gas (MRG), both produced from methanol by onboard reformers using exhaust heat, has been proposed in previous research. Adjusting the proportions of DME and MRG with different ignition properties effectively controlled the ignition timing and load in HCCI combustion. The use of the single liquid fuel, methanol, also eliminates the inconvenience of carrying two fuels while maintaining the effective ignition control effect. Because reactions producing DME and MRG from methanol are endothermic, a part of the exhaust gas heat energy can be recovered during the fuel reforming. Methanol can be reformed into various compositions of hydrogen, carbon monoxide, and carbon dioxide. The present paper aims to establish the optimum MRG composition for the system in terms of ignition control and overall efficiency. The results show that an increased hydrogen fraction in MRG retards the onset of high-temperature oxidation and permits operation with higher equivalence ratios. However, the MRG composition affects the engine efficiency only a little, and the MRG produced by the thermal decomposition having the best waste-heat recovery capacity brings the highest overall thermal efficiency in the HCCI engine system fuelled with DME and MRG.


1999 ◽  
Author(s):  
Y. Kawabata ◽  
K. Nakagawa ◽  
F. Shoji

Abstract Recently, a new design of engine combustion that achieves higher efficiency and less NOx emission has been proposed. Some researchers have started studying the concept, which is called Homogeneous Charge Compression Ignition (HCCI), but there have been few reports on investigations using a future prospective alternative fuel, natural gas. In this study, natural gas fueled operation of HCCI using a single cylinder gas engine was conducted. Operating and exhaust characteristics were obtained. Experimental data confirmed the potential of higher efficiency and less NOx emission, though THC and CO were higher. Based on these data, the feasibility of this concept for gas engines is also examined.


Sign in / Sign up

Export Citation Format

Share Document