Experimental research and theoretical analysis of flow instability in supercritical carbon dioxide natural circulation loop

2017 ◽  
Vol 205 ◽  
pp. 813-821 ◽  
Author(s):  
Guangxu Liu ◽  
Yanping Huang ◽  
Junfeng Wang ◽  
Fa Lv ◽  
Shenghui Liu
Author(s):  
Jingjing Li ◽  
Tao Zhou ◽  
Mingqiang Song ◽  
Yanping Huang

3-D simulation of supercritical water flow instability in parallel channels and a natural circulation loop are presented. Results are obtained for various heating powers. The results show that, in the natural circulation loop the steady state mass flow will firstly increase with the heating power and then decrease. And mass flow grows with the growing of the inlet temperature, decreases with the growing of system pressure. Under a large heat flux, the parallel channels will experience the flow instability of out phase mass flow oscillation. And the oscillation amplitude will grow with the growing of heating power. At last, the numerical simulations are validated by B.T. Swapnalee’s experience formula.


Author(s):  
Jong Chull Jo ◽  
Frederick J. Moody ◽  
Kyu Sik Do

A PWR incorporates a passive auxiliary feedwater system (PAFS), a closed natural circulation loop which is aligned to feed condensed water to its corresponding steam generator (SG). During its operation, saturated steam in the SG secondary side moves up due to buoyancy force and passes through a steam line, and then flows into a tube-tank type passive condensation heat exchanger where steam is condensed inside the tubes while the tube outer surfaces are cooled by the pool water. The condensate water is passively fed into the SG economizer by gravity. Because a natural circulation loop is susceptible to two-phase flow instability, it is requisite to confirm the system is designed adequately to avoid the potential challenges to its operational safety due to the instability. This paper presents an analytical approach for assessing if the PAFS has possible thermal and fluid mechanical characteristics which could lead to an undesirable unstable or oscillating condensate water level in the vertical pipe section. Both steady and unsteady analytical solutions for a simplified natural circulation loop model of the PAFS were derived in terms of the condensate water level and velocity in the vertical pipe section. From the solutions, the criteria for determining a potential for two-phase instability in the system were obtained.


Sign in / Sign up

Export Citation Format

Share Document