Numerical Simulations on Supercritical Water Flow Instability

Author(s):  
Jingjing Li ◽  
Tao Zhou ◽  
Mingqiang Song ◽  
Yanping Huang

3-D simulation of supercritical water flow instability in parallel channels and a natural circulation loop are presented. Results are obtained for various heating powers. The results show that, in the natural circulation loop the steady state mass flow will firstly increase with the heating power and then decrease. And mass flow grows with the growing of the inlet temperature, decreases with the growing of system pressure. Under a large heat flux, the parallel channels will experience the flow instability of out phase mass flow oscillation. And the oscillation amplitude will grow with the growing of heating power. At last, the numerical simulations are validated by B.T. Swapnalee’s experience formula.

Author(s):  
ZhongChun Li ◽  
JiYang Yu ◽  
XiaoMing Song

As a part of “supercritical water reactor basic research”, the stability of the natural circulation research plays an important role on the feasibility of supercritical water reactor and experiment research. In this paper, the stability of a supercritical water natural circulation loop built by Department of Engineering Physics, Tsinghua University was studied by numerical method. It was confirmed that the static or Ledinegg instability doesn’t occur in HACA system, and there are no instabilities existing when the inlet enthalpy is larger than critical enthalpy. Instability was observed by numerical way, which is similar to DWOs and PDOs in two phase natural circulation loop. The system parameters’ influence on the instability of supercritical natural circulation loop was studied.


2016 ◽  
Vol 2 (3) ◽  
Author(s):  
Yuzhou Chen ◽  
Chunsheng Yang ◽  
Minfu Zhao ◽  
Keming Bi ◽  
Kaiwen Du

An experiment of natural circulation of supercritical water in parallel channels was performed in bare tubes of inner diameter 7.98 mm and heated length 1.3 m, covering the ranges of pressure of 24.7–25.5 MPa, mass flux of 400–1000  kg/m2 s, and heat flux of up to 1.83  MW/m2. When the heat flux reached 1.12  MW/m2, the outlet water temperature jumped from 325°C to 360°C, associated with a decrease in the flow rate and an initiation of dynamic instability. When the heat flux exceeded 1.39  MW/m2, the flow instability was stronger, and the flow rate increased in one channel and decreased in another one. Until the heat flux reached 1.61  MW/m2, the outlet water temperatures of two channels reached the pseudocritical point, and the flow rates of two channels tended to close each other. The experiment with a single heated channel was also performed for comparison. The measurements on the heat-transfer coefficients (HTCs) were compared to the calculations by the Bishop et al., Jackson’s, and Mokry et al. correlations, showing different agreements within various conditions.


Author(s):  
Jong Chull Jo ◽  
Frederick J. Moody ◽  
Kyu Sik Do

A PWR incorporates a passive auxiliary feedwater system (PAFS), a closed natural circulation loop which is aligned to feed condensed water to its corresponding steam generator (SG). During its operation, saturated steam in the SG secondary side moves up due to buoyancy force and passes through a steam line, and then flows into a tube-tank type passive condensation heat exchanger where steam is condensed inside the tubes while the tube outer surfaces are cooled by the pool water. The condensate water is passively fed into the SG economizer by gravity. Because a natural circulation loop is susceptible to two-phase flow instability, it is requisite to confirm the system is designed adequately to avoid the potential challenges to its operational safety due to the instability. This paper presents an analytical approach for assessing if the PAFS has possible thermal and fluid mechanical characteristics which could lead to an undesirable unstable or oscillating condensate water level in the vertical pipe section. Both steady and unsteady analytical solutions for a simplified natural circulation loop model of the PAFS were derived in terms of the condensate water level and velocity in the vertical pipe section. From the solutions, the criteria for determining a potential for two-phase instability in the system were obtained.


2019 ◽  
Vol 132 ◽  
pp. 212-226 ◽  
Author(s):  
Zongyang Li ◽  
Puzhen Gao ◽  
Yuqi Lin ◽  
Yinxing Zhang ◽  
Peng Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document