Achieving the carbon intensity target of China: A least squares support vector machine with mixture kernel function approach

2019 ◽  
Vol 233-234 ◽  
pp. 196-207 ◽  
Author(s):  
Bangzhu Zhu ◽  
Shunxin Ye ◽  
Minxing Jiang ◽  
Ping Wang ◽  
Zhanchi Wu ◽  
...  
2021 ◽  
Vol 50 (2) ◽  
pp. 319-331
Author(s):  
Wenlu Ma ◽  
Han Liu

Least squares support vector machine (LSSVM) is a machine learning algorithm based on statistical theory. Itsadvantages include robustness and calculation simplicity, and it has good performance in the data processingof small samples. The LSSVM model lacks sparsity and is unable to handle large-scale data problem, this articleproposes an LSSVM method based on mixture kernel learning and sparse samples. This algorithm reduces theinitial training set to a sub-dataset using a sparse selection strategy. It converts the single kernel function in theLSSVM model into a mixed kernel function and optimizes its parameters. The reduced sub-dataset is used fortraining LSSVM. Finally, a group of datasets in the UCI Machine Learning Repository were used to verify theeffectiveness of the proposed algorithm, which is applied to real-world power load data to achieve better fittingand improve the prediction accuracy.


2020 ◽  
Vol 12 (1) ◽  
pp. 168781401989956
Author(s):  
Xuejin Gao ◽  
Hongfei Wei ◽  
Tianyao Li ◽  
Guanglu Yang

The fault characteristic signals of rolling bearings are coupled with each other, thus increasing the difficulty in identifying the fault characteristics. In this study, a fault diagnosis method of rolling bearing based on least squares support vector machine is proposed. First, least squares support vector machine model is trained with the samples of known classes. Least squares support vector machine algorithm involves the selection of a kernel function. The complexity of samples in high-dimensional space can be adjusted through changing the parameters of kernel function, thus affecting the search for the optimal function as well as final classification results. Particle swarm optimization and 10-fold cross-validation method are adopted to optimize the parameters in the training model. Then, with the optimized parameters, the classification model is updated. Finally, with the feature vector of the test samples as the input of least squares support vector machine, the pattern recognition of the testing samples is performed to achieve the purpose of fault diagnosis. The actual bearing fault data are analyzed with the diagnosis method. This method allows the accurate classification results and fast diagnosis and can be applied in the diagnosis of compound faults of rolling bearing.


2009 ◽  
Vol 35 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Xue-Song WANG ◽  
Xi-Lan TIAN ◽  
Yu-Hu CHENG ◽  
Jian-Qiang YI

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shengpu Li ◽  
Yize Sun

Ink transfer rate (ITR) is a reference index to measure the quality of 3D additive printing. In this study, an ink transfer rate prediction model is proposed by applying the least squares support vector machine (LSSVM). In addition, enhanced garden balsam optimization (EGBO) is used for selection and optimization of hyperparameters that are embedded in the LSSVM model. 102 sets of experimental sample data have been collected from the production line to train and test the hybrid prediction model. Experimental results show that the coefficient of determination (R2) for the introduced model is equal to 0.8476, the root-mean-square error (RMSE) is 6.6 × 10 (−3), and the mean absolute percentage error (MAPE) is 1.6502 × 10 (−3) for the ink transfer rate of 3D additive printing.


Sign in / Sign up

Export Citation Format

Share Document