scholarly journals Predicting Ink Transfer Rate of 3D Additive Printing Using EGBO Optimized Least Squares Support Vector Machine Model

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shengpu Li ◽  
Yize Sun

Ink transfer rate (ITR) is a reference index to measure the quality of 3D additive printing. In this study, an ink transfer rate prediction model is proposed by applying the least squares support vector machine (LSSVM). In addition, enhanced garden balsam optimization (EGBO) is used for selection and optimization of hyperparameters that are embedded in the LSSVM model. 102 sets of experimental sample data have been collected from the production line to train and test the hybrid prediction model. Experimental results show that the coefficient of determination (R2) for the introduced model is equal to 0.8476, the root-mean-square error (RMSE) is 6.6 × 10 (−3), and the mean absolute percentage error (MAPE) is 1.6502 × 10 (−3) for the ink transfer rate of 3D additive printing.

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 212
Author(s):  
Yu-Wei Liu ◽  
Huan Feng ◽  
Heng-Yi Li ◽  
Ling-Ling Li

Accurate prediction of photovoltaic power is conducive to the application of clean energy and sustainable development. An improved whale algorithm is proposed to optimize the Support Vector Machine model. The characteristic of the model is that it needs less training data to symmetrically adapt to the prediction conditions of different weather, and has high prediction accuracy in different weather conditions. This study aims to (1) select light intensity, ambient temperature and relative humidity, which are strictly related to photovoltaic output power as the input data; (2) apply wavelet soft threshold denoising to preprocess input data to reduce the noise contained in input data to symmetrically enhance the adaptability of the prediction model in different weather conditions; (3) improve the whale algorithm by using tent chaotic mapping, nonlinear disturbance and differential evolution algorithm; (4) apply the improved whale algorithm to optimize the Support Vector Machine model in order to improve the prediction accuracy of the prediction model. The experiment proves that the short-term prediction model of photovoltaic power based on symmetry concept achieves ideal accuracy in different weather. The systematic method for output power prediction of renewable energy is conductive to reducing the workload of predicting the output power and to promoting the application of clean energy and sustainable development.


2019 ◽  
Vol 44 (3) ◽  
pp. 266-281 ◽  
Author(s):  
Zhongda Tian ◽  
Yi Ren ◽  
Gang Wang

Wind speed prediction is an important technology in the wind power field; however, because of their chaotic nature, predicting wind speed accurately is difficult. Aims at this challenge, a backtracking search optimization–based least squares support vector machine model is proposed for short-term wind speed prediction. In this article, the least squares support vector machine is chosen as the short-term wind speed prediction model and backtracking search optimization algorithm is used to optimize the important parameters which influence the least squares support vector machine regression model. Furthermore, the optimal parameters of the model are obtained, and the short-term wind speed prediction model of least squares support vector machine is established through parameter optimization. For time-varying systems similar to short-term wind speed time series, a model updating method based on prediction error accuracy combined with sliding window strategy is proposed. When the prediction model does not match the actual short-term wind model, least squares support vector machine trains and re-establishes. This model updating method avoids the mismatch problem between prediction model and actual wind speed data. The actual collected short-term wind speed time series is used as the research object. Multi-step prediction simulation of short-term wind speed is carried out. The simulation results show that backtracking search optimization algorithm–based least squares support vector machine model has higher prediction accuracy and reliability for the short-term wind speed. At the same time, the prediction performance indicators are also improved. The prediction result is that root mean square error is 0.1248, mean absolute error is 0.1374, mean absolute percentile error is 0.1589% and R2 is 0.9648. When the short-term wind speed varies from 0 to 4 m/s, the average value of absolute prediction error is 0.1113 m/s, and average value of absolute relative prediction error is 8.7111%. The proposed prediction model in this article has high engineering application value.


2018 ◽  
Vol 52 (1-2) ◽  
pp. 3-10 ◽  
Author(s):  
Xuanyu Liu ◽  
Kaiju Zhang

Background: Earth pressure balance shield machines are widely used in underground engineering. To prevent ground deformation even disastrous accidents, the earth pressure in soil chamber must be kept balance to that on excavation face during shield tunneling. Therefore, in this paper an advanced control strategy that a least squares support vector machine model-based predictive control scheme for earth pressure balance is developed. Methods: A prediction model is established to predict the earth pressure in chamber during the tunneling process by means of least squares support vector machine technology. On this basis, an optimization function is given which aims at minimizing the difference between the predicted earth pressure and the desired one. To obtain the optimal control actions, an improved ant colony system algorithm is used as rolling optimization for earth pressure balance control in real time. Results: Based on the field data the simulation experiments are performed. The results demonstrate that the method proposed is very effective to control earth pressure balance, and it has good stability. Conclusion: The screw conveyor speed and advance speed are the major factors affecting the earth pressure in chamber. The excavation face could be controlled balance better by adjusting the screw conveyor speed and advance speed.


2009 ◽  
Vol 16-19 ◽  
pp. 410-414 ◽  
Author(s):  
Chang Long Zhao ◽  
Yi Qiang Wang ◽  
Xue Song Guan

In this paper, a hybrid method of correlation analysis based on the gray theory and the least squares support vector machine is proposed to model the thermal error of spindle of NC machine tool and predict the thermal error. The gray correlation analysis is used to optimize the measuring points of spindle. The optimum measuring points and the measured thermal error of spindle are regarded as the data to be trained to build the thermal error prediction model based on the least squares support vector machine (LS-SVM). The results show that the thermal error prediction model based on LS-SVM of NC machine tool has advantages of high precision and good generalization performance. The prediction model can be used in real-time compensation of NC machine tool and can prove the process precision and reduce cost.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Yi ◽  
Hao Zheng ◽  
Yu Tian ◽  
Jin-peng Liu

In order to meet the demand of power supply, the construction of transmission line projects is constantly advancing, and the level of cost control is constantly improving, which puts forward higher requirements for the accuracy of cost prediction. This paper proposes an intelligent cost prediction model based on least squares support vector machine (LSSVM) optimized by particle swarm optimization (PSO). Originally extracting natural, technological, and economic indexes from the perspective of cost composition, principal component analysis (PCA) is used to reduce the dimension of indexes. And PSO is innovatively introduced to optimize the parameters of LSSVM model to obtain the optimal parameters. The obtained principal component data are imported into empirical parameter LSSVM prediction model and the optimized parameter PSO-LSSVM prediction model, respectively, for modeling and prediction, and then comparing the prediction results to analyze the effect of model optimization. The results show that the absolute deviation of the optimized parameter prediction model is less than 9%. And the prediction accuracy of the optimized parameter prediction model is better than that of the empirical parameter model, which can provide a reliable basis for investment decision-making of transmission line projects.


2013 ◽  
Vol 760-762 ◽  
pp. 1987-1991
Author(s):  
Yun Fa Li

To master the variation regularity of finance, obtain greater benefits in stock investment. study of the support vector machine and application in prediction of stock market. The simulated annealing algorithm to optimize the least squares support vector machine prediction model, and the least square support vector machine and simulated annealing algorithm is described, given the optimal prediction model. Through the research on the simulation of the Hang Seng Index, shows that this method is simple, fast convergence, the algorithm with high accuracy. Has the actual guiding sense for investors, the stock market of the financial firm to operate.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Jian Chai ◽  
Jiangze Du ◽  
Kin Keung Lai ◽  
Yan Pui Lee

This paper proposes an EMD-LSSVM (empirical mode decomposition least squares support vector machine) model to analyze the CSI 300 index. A WD-LSSVM (wavelet denoising least squares support machine) is also proposed as a benchmark to compare with the performance of EMD-LSSVM. Since parameters selection is vital to the performance of the model, different optimization methods are used, including simplex, GS (grid search), PSO (particle swarm optimization), and GA (genetic algorithm). Experimental results show that the EMD-LSSVM model with GS algorithm outperforms other methods in predicting stock market movement direction.


2011 ◽  
Vol 219-220 ◽  
pp. 754-761
Author(s):  
Guan Hua Zhao ◽  
Wen Wen Yan

In order to improve the accuracy of financial achievement, this paper applies a new forecast model of the Increased memory type least squares support vector machine base on neighborhood rough set and quadratic Renyi-entropy on the basis of the traditional support vector machine prediction model. The paper also independently derives the entropy fit for the financial distress prediction which is in discrete sequence, as well as the expression of support vector machine kernel function. The experimental results show that the improved model is significantly superior to the traditional LS-SVM as well as the standard support vector machine prediction model, regardless of the forecast accuracy , training samples number.


Sign in / Sign up

Export Citation Format

Share Document