Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation

2019 ◽  
Vol 253 ◽  
pp. 113595 ◽  
Author(s):  
Kangping Li ◽  
Fei Wang ◽  
Zengqiang Mi ◽  
Mahmoud Fotuhi-Firuzabad ◽  
Neven Duić ◽  
...  
Forecasting ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 470-487
Author(s):  
Keda Pan ◽  
Changhong Xie ◽  
Chun Sing Lai ◽  
Dongxiao Wang ◽  
Loi Lei Lai

Considering that most of the photovoltaic (PV) data are behind-the-meter (BTM), there is a great challenge to implement effective demand response projects and make a precise customer baseline (CBL) prediction. To solve the problem, this paper proposes a data-driven PV output power estimation approach using only net load data, temperature data, and solar irradiation data. We first obtain the relationship between delta actual load and delta temperature by calculating the delta net load from matching the net load of irradiation for an approximate day with the least squares method. Then we match and make a difference of the net load with similar electricity consumption behavior to establish the relationship between delta PV output power and delta irradiation. Finally, we get the PV output power and implement PV-load decoupling by modifying the relationship between delta PV and delta irradiation. The case studies verify the effectiveness of the approach and it provides an important reference to perform PV-load decoupling and CBL prediction in a residential distribution network with BTM PV systems.


Author(s):  
Soedibyo Soedibyo ◽  
Farid Dwi Murdianto ◽  
Suyanto Suyanto ◽  
Mochamad Ashari ◽  
Ontoseno Penangsang

<em>Photovoltaic system (PV) is widely used in various renewable energy application. The main problem of PV system is how to get the maximum output power which is integrated in microgrid system. Furthermore, the redundancy output power generated by on a distribution system should also be considered. This study utilizes the excess power for energy storage using bidirectional of KY inverse</em> <em>converter. Since the DC voltage which generated by PV and the energy storage will be converted into AC voltage using inverter toward load. This paper proposes ANFIS as search optimization method using SEPIC converter with a maximum efficiency of 99.95%</em> to impact to power generation performance  in microgrid system.


2014 ◽  
Vol 612 ◽  
pp. 71-76 ◽  
Author(s):  
Smita Pareek ◽  
Ratna Dahiya

The power generated by solar photovoltaic system depends on insolation, temperature and shading situation etc. These days’ solar PV arrays are mainly building integrated. Therefore PV array are often under partial shadow. The feature of these shadows can be either easy-to-predict (like neighbour’s chimney, nearby tree or neighbouring buildings) or difficult-to-predict (passing clouds, birds litter).Thus output power obtained by PV arrays decreases in a considerable manner. In this paper, output powers, currents and voltages for SP & TCT topologies are calculated for different patterns of easy-to-predict partial shading conditions on a 4×4 PV field.


2012 ◽  
Vol 263-266 ◽  
pp. 2131-2137
Author(s):  
Qing Fu ◽  
Guang Lei Cheng ◽  
Feng Jie Liu ◽  
Gui Long Ma

To utilize maximum solar energy, maximum power point tracking (MPPT) control is much important for PV system. The paper presents a new MPPT method based on adaptive predictive algorithm which is superior to traditional Perturbation and Observation (P&O) method. PV output power is predicted to improve the tracking speed and deduce the possibility of misjudgment of increasing or decreasing the PV output voltage. Because PV output power can be obtained directly, close loop can be established so as to achieve a precise prediction. Simulations and experiments prove that proposed MPPT control can track the maximum power point rapidly, and the system can operate steadily with this MPPT method.


Author(s):  
G Vaddikasulu , Meneni Saigeetha

Maximum power point techniques (MPPT) are used in photovoltaic system to make full utilization of PV array output power. The output power of PV array is always changing with weather conditions i.e., solar irradiation and atmospheric temperature. PV cell generates power by converting sunlight into electricity. The electric power generated is proportional to solar radiation. PV cell can generate around 0.5 to 0.8 volts. During cloudy weather due to varying insolation levels the output of PV array varies. The MPPT is a process which tracks the maximum power from array and by increasing the duty cycle of the DC-DC boost converter, the output voltage of the system is increased. This paper presents the cuckoo mppt technique for PV system along with SMC controller methods in grid connected photovoltaic (PV) systems for optimizing the solar energy efficiency


Sign in / Sign up

Export Citation Format

Share Document