Modeling and Simulation of MPPT-SEPIC Combined Bidirectional Control Inverse KY Converter Using ANFIS in Microgrid System

Author(s):  
Soedibyo Soedibyo ◽  
Farid Dwi Murdianto ◽  
Suyanto Suyanto ◽  
Mochamad Ashari ◽  
Ontoseno Penangsang

<em>Photovoltaic system (PV) is widely used in various renewable energy application. The main problem of PV system is how to get the maximum output power which is integrated in microgrid system. Furthermore, the redundancy output power generated by on a distribution system should also be considered. This study utilizes the excess power for energy storage using bidirectional of KY inverse</em> <em>converter. Since the DC voltage which generated by PV and the energy storage will be converted into AC voltage using inverter toward load. This paper proposes ANFIS as search optimization method using SEPIC converter with a maximum efficiency of 99.95%</em> to impact to power generation performance  in microgrid system.

Author(s):  
Wei Xu ◽  
Spyros A. Kinnas

In this paper, an optimization method is developed for determining the loading on each component, which leads to the maximum efficiency (i.e. maximum output power) of a contra-rotating turbine when subject to uniform inflow. The lifting line model is adopted and both the self-induced velocities and the interaction induced velocities between the front and the back components are included. The optimum ratio of rotational velocities for reducing the torque on support structures and the performance effects of the gap distance between two components are investigated. The optimum distance for two in-line turbines in a turbine farm is also analyzed.


2019 ◽  
Vol 14 (1) ◽  
pp. 170-181
Author(s):  
Hassan Kenjrawy ◽  
Carlo Makdisie ◽  
Issam Housamo ◽  
Hassan Haes Alhelou

The use of renewable resources for energizing the modern power systems has recently increased due to its sustainability and low operating costs. Photovoltaic (PV) system appears to be a good solution due to the fact that it can be established and operated locally. However, the maximum output power of these systems is usually achieved by using the maximum sun and power point (MPP) tracking techniques. This paper suggests a novel genetic algorithm (GA)-based technique to obtain the maximum output power of practical PV system located in the Latakia province of Syria. Based on this technique, azimuth and elevation angles of solar panels located in Latakia are first determined to track maximum radiation of the sun for every day of the whole year. After that, a GA-based technique is developed to track the maximum power point corresponding to maximum radiation during the year. Simulation results in MATLAB environment demonstrate the validation and effectiveness of the proposed GA-based technique to obtain the maximum generated power of the PV system. The results of this research can be easily adopted as a database reference to design the PV control system.


2011 ◽  
Vol 71-78 ◽  
pp. 2077-2080 ◽  
Author(s):  
Cui Qiong Yan

A V-trough PV system with polysilicon cell array and super cell array has been constructed and tested. Open-circuit voltage, short-circuit current, output power, fill factor and influence of temperature on V-trough PV concentration system have been analyzed. The results indicate that the output power of 10 pieces of polysilicon cell array is 6.198W and it is 1.21 times as that of non-concentration condition. Maximum output power of V-trough PV system with water cooling increase to 8.28W and power increment rate reach 62.67% compared with the non-concentration PV system. For the super cell array with no water cooling, the maximum output power of V-trough PV system varies from 7.834W to 14.223W. The results of this work provide some experimental support to the applications of the V-trough PV system.


2021 ◽  
Vol 4 (2) ◽  
pp. 49-55
Author(s):  
Rao Muhammad Asif ◽  
Muhammad Abu Bakar Siddique ◽  
Ateeq Ur Rehman ◽  
Muhammad Tariq Sadiq ◽  
Adeel Asad

Photovoltaic energy is considered highly favorable due to the environment's pleasant nature. After analyzing different maximum power point tracking (MPPT) algorithms, an effective control scheme is proposed to obtain stabilized maximum output power throughout the PV system. Therefore, this article presents an efficient control algorithm for the extraction of maximum power through a PV system under severe climatic drifts. The modified fuzzy logic controller sustains the maximum output power of the system by defining fuzzy rules to control the duty cycle appropriately. A DC-DC boost converter is also modeled to stabilize and maintain output power under variant climatic uncertainties. Furthermore, charging management control is also implemented on lead-acid battery bank to store PV energy for backup usage. It defines charging-discharging time and state of charge for keeping the battery bank healthier.


Author(s):  
Spyros A. Kinnas ◽  
Wei Xu ◽  
Yi-Hsiang Yu ◽  
Lei He

A design method based on a lifting line model is developed to determine the optimum radial circulation distribution on a turbine blade, which will produce the maximum output power for a given tip speed ratio and a given number of blades. The resulting optimum circulation distribution is used in order to determine the preliminary shape of the turbine blade. The blade shape is then refined by using an analysis method, based on a vortex-lattice scheme, in combination with a nonlinear optimization method, which determines the blade geometry that will produce the highest output power. Finally, the effect of nonuniform current inflow on the performance of a turbine is also addressed by coupling the vortex-lattice method with a viscous flow solver.


Author(s):  
Ehsan Barmala

<span>In this paper, a Doherty power amplifier was designed and simulated at 2.4 GHz central frequency which has high efficiency. A Doherty power amplifier is a way to increase the efficiency in the power amplifiers. OMMIC ED02AH technology and PHEMT transistors, which is made of gallium arsenide, have been used in this simulation. The Doherty power amplifier unique feature is its simple structure which is consisting of two parallel power amplifiers and transmission lines. In order to integrate the circuit, the Doherty power transmission amplifier lines were implemented using an inductor and capacitive components. Also, the Wilkinson power divider is used on the chip input. To improve the efficiency, the auxiliary amplifier dimensions is selected enlarge and the further input power is allocated it by the power divider. A parallel R-C circuit has been used at the input of transistors to improve their stability. Simulation results show that the Doherty power amplifier has 17.2 dB output power gain, 23 dBm maximum output power, and its output power P<sub>1dB</sub> =22.6dBm at compression point -1 dB, also, its maximum efficiency is 55.5%.</span>


2014 ◽  
Vol 635-637 ◽  
pp. 1165-1170
Author(s):  
Zhi Gang Xiao ◽  
Yao Jiang ◽  
Chao Qun Xu ◽  
Hang Miao

Optimization of the PV array on roof has a great influence on designing of the maximum capacity of PV system. This paper analyses the effect of various factors on the maximum output power of PV array system on roof. Model for optimizing the PV array on the roof have been set up for simulation, and the calculation results show that the number of PV subarray is smaller, and the PV system capacity is larger. And then we can get the general design method for maximum photovoltaic system capacity under given area.


Sign in / Sign up

Export Citation Format

Share Document