Novel stand-alone, completely autonomous and renewable energy based charging station for charging plug-in hybrid electric vehicles (PHEVs)

2020 ◽  
Vol 260 ◽  
pp. 114194 ◽  
Author(s):  
Hassan Fathabadi
Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 260
Author(s):  
Mahendiran T. Vellingiri ◽  
Ibrahim M. Mehedi ◽  
Thangam Palaniswamy

In recent years, alternative engine technologies are necessary to resolve the problems related to conventional vehicles. Electric vehicles (EVs) and hybrid electric vehicles (HEVs) are effective solutions to decarbonize the transportation sector. It also becomes important to shift from traditional houses to smart houses and from classical vehicles to EVs or HEVs. It is needed to combine renewable energy sources (RESs) such as solar photovoltaics, wind energy systems, and various forms of bio-energies. Among various HEV technologies, an effective battery management system (BMS) still remains a crucial issue that is majorly used for indicating the battery state of charge (SOC). Since over-charging and over-discharging result in inevitable impairment to the batteries, accurate SOC estimation desires to be presented by the BMS. Although several SOC estimation techniques exist to regulate the SOC of the battery cell, it is needed to improvise the SOC estimation performance on HEVs. In this view, this paper focuses on the design of a novel deep learning (DL) with SOC estimation model for secure renewable energy management (DLSOC-REM) technique for HEVs. The presented model employs a hybrid convolution neural network and long short-term memory (HCNN-LSTM) model for the accurate estimation of SOC. In order to improve the SOC estimation outcomes of the HCNN-LSTM model, the barnacles mating optimizer (BMO) is applied for the hyperpower tuning process. The utilization of the HCNN-LSTM model makes the modeling process easier and offers a precise depiction of the input–output relationship of the battery model. The design of BMO based HCNN-LSTM model for SOC estimation shows the novelty of the work. An extensive experimental analysis highlighted the supremacy of the proposed model over other existing methods in terms of different aspects.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Charles G. Tse ◽  
Benjamin A. Maples ◽  
Frank Kreith

This article is a feasibility analysis of using the batteries in plug-in hybrid electric vehicles (PHEVs) for peak shaving. The analysis focuses on energy availability of the PHEV fleet as well as the financial savings to the utilities by analyzing different charging scenarios and circuitry. The energy availability and the financial savings are heavily dependent on the location and availability of charging stations. Three charging scenarios are analyzed: charging is possible at any time; cars can only be charged overnight; and charging can be done overnight and twice during the day at the place of work for cars used for commuting. The major findings of the study are that charging only overnight will not provide sufficient energy when needed, but both other charging mechanisms can provide effective peak shaving. The charging anytime would require funding a large number of charging station, but charging overnight and at work could be accomplished with relative minor financial investments. The savings from peak shaving could be used for incentives to offset the extra cost of batteries in plug-in electric vehicles (EVs).


Author(s):  
Charles G. Tse ◽  
Benjamin A. Maples ◽  
Frank Kreith

This article is a feasibility analysis of using the batteries in Plug-in Hybrid Electric Vehicles (PHEVs) for peak shaving. The analysis focuses on energy availability of the PHEV fleet as well as the financial savings to the utilities by analyzing different charging scenarios and circuitry. The energy availability and the financial savings are heavily dependent on the location and availability of charging stations. Three charging scenarios are analyzed: charging is possible at any time; cars can only be charged overnight; charging can be done overnight and twice during the day at the place of work for cars that are used for commuting. The major findings of the study are that charging only overnight will not provide sufficient energy when needed, but both other charging mechanisms can provide effective peak shaving. The charging anytime would require funding a large number of charging station, but charging overnight and at work could be accomplished with relative minor financial investments. The savings from peak shaving could be used for incentives to offset the extra cost of batteries in plug-in electric vehicles.


Sign in / Sign up

Export Citation Format

Share Document