scholarly journals Integration of solid oxide fuel cell and internal combustion engine for maritime applications

2021 ◽  
Vol 281 ◽  
pp. 115854
Author(s):  
Harsh Sapra ◽  
Jelle Stam ◽  
Jeroen Reurings ◽  
Lindert van Biert ◽  
Wim van Sluijs ◽  
...  
2013 ◽  
Vol 31 (1) ◽  
pp. 2-13 ◽  
Author(s):  
Asis Sarkar

Purpose – This paper aims to evaluate nine types of electrical energy generation options with regard to seven criteria. The analytic hierarchy process (AHP) was used to perform the evaluation. The TOPSIS method was used to evaluate the best generation technology. Design/methodology/approach – The options that were evaluated are the hydrogen combustion turbine, the hydrogen internal combustion engine, the hydrogen fuelled phosphoric acid fuel cell, the hydrogen fuelled solid oxide fuel cell, the natural gas fuelled phosphoric acid fuel cell, the natural gas fuelled solid oxide fuel cell, the natural gas turbine, the natural gas combined cycle and the natural gas internal combustion engine. The criteria used for the evaluation are CO2 emissions, NOX emissions, efficiency, capital cost, operation and maintenance costs, service life and produced electricity cost. Findings – The results drawn from the analysis in technology wise are as follows: natural gas fuelled solid oxide fuel cells>natural gas combined cycle>natural gas fuelled phosphoric acid fuel cells>natural gas internal combustion engine>hydrogen fuelled solid oxide fuel cells>hydrogen internal combustion engines>hydrogen combustion turbines>hydrogen fuelled phosphoric acid fuel cells> and natural gas turbine. It shows that the natural gas fuelled solid oxide fuel cells are the best technology available among all the available technology considering the seven criteria such as service life, electricity cost, O&M costs, capital cost, NOX emissions, CO2 emissions and efficiency of the plant. Research limitations/implications – The most dominant electricity generation technology proved to be the natural gas fuelled solid oxide fuel cells which ranked in the first place among nine alternatives. The research is helpful to evaluate the different alternatives. Practical implications – The research is helpful to evaluate the different alternatives and can be extended in all the spares of technologies. Originality/value – The research was the original one. Nine energy generation options were evaluated with regard to seven criteria. The energy generation options were the hydrogen combustion turbine, the hydrogen internal combustion engine, the hydrogen fuelled phosphoric acid fuel cell, the hydrogen fuelled solid oxide fuel cell, the natural gas fuelled phosphoric acid fuel cell, the natural gas fuelled solid oxide fuel cell, the natural gas turbine, the natural gas combined cycle and the natural gas internal combustion engine. The criteria used for the evaluation were efficiency, CO2 emissions, NOX emissions, capital cost, O&M costs, electricity cost and service life.


Author(s):  
José Colón Rodríguez ◽  
Nor Farida Harun ◽  
Nana Zhou ◽  
Edward Sabolsky ◽  
David Tucker

Abstract Due to the intermittent nature of the renewable power plants and the rigid operation of existing plans, the need for flexible power production is eminent. Hybrid energy systems have shown potential for flexible power production capable to fulfill the power demands and maintain the efficiency. This work studies different design cases of a 100kW Internal Combustion Engine (ICE) and Solid Oxide Fuel Cell (SOFC) hybrid system. Anode off-gas from the fuel cell stack provided the chemical energy to run the ICE. Heat management of the anode exhaust was considered to attain the operational limits of the ICE in the present configuration. A turbocharger was used to deliver the necessary air flow for both the fuel cell stack and the engine. A series of 25 design cases were chosen to analyze the performance and the potential flexibility of this cycle. The 25-design points resulted from a matrix composed of the variation of fuel utilization and reformer operating temperature, ranging from 70% to 90% and 600K to 1000K, respectively. At each design point, hardware was re-sized to match the desired conditions. The cycle performance and fuel cell distributed profiles are discussed in this paper. It is discovered that the system efficiency increases as the fuel utilization increases following a nearly linear behavior. The highest efficiency attained is 62% at a reformer operating temperature of 800K and a 90% fuel utilization. The minimum external fuel required to maintain turbocharger in operation decreases with the increase on the reformer temperature. Power contribution between ICE and SOFC follows a linear behavior closely overlapping each trend at different reforming operational temperatures. The impact of external reforming and internal on-anode reforming is also discussed. It is found that there is an optimal balance between the external and internal reforming. The optimal methane content in this work is shown to be around ∼18 vol%.


Author(s):  
Keigo Onita ◽  
Kiyoshi Yanagihara ◽  
Rikimaru Yamada ◽  
Youhei Nakagawa

Exhaust gas of internal combustion engine contains carbon-oxide and hydrocarbon. The temperature of these gases which are emitted in atmosphere are higher than 873 K. In the environment under the high-temperature gas. Reforming of Steam Methane Reforming, Water-Gas Shift Reaction and Carbon Precipitation are expected in the exhaust pipe. This environment of the exhaust-gases accommodates with operating environment of Solid Oxide Fuel Cell (SOFC). Therefore, if electricity can be collected from such exhaust gas environment, engine system can utilize smaller AC generator and battery, and if the gas reforming and electrochemical reactions can clean the exhaust gases, that can lead to disuse catalyzer. Those also can accomplish lighter engine system and totally efficiency of engine system. Therefore, in order to collect electricity from exhaust gas, the single type SOFC unit is designed and installed in the exhaust pipe of 110cc engine of a small motorcycle. Various experiments are executed in this paper. The experimental results show that the developed SOFC-unit works, and power density of about 8.5mW/cm2 is obtained.


Sign in / Sign up

Export Citation Format

Share Document