100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power

2021 ◽  
Vol 301 ◽  
pp. 117441
Author(s):  
Yuzhou Zhou ◽  
Jiexing Zhao ◽  
Qiaozhu Zhai
2018 ◽  
Vol 12 (19) ◽  
pp. 4284-4291 ◽  
Author(s):  
Juliana Barbosa Nunes ◽  
Nadali Mahmoudi ◽  
Tapan K. Saha ◽  
Debabrata Chattopadhyay

2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Aleksandra Kanevče ◽  
Igor Tomovski ◽  
Ljubčo Kocarev

In this paper we analyze the impact of the renewable energy sources on the overall electric power system of the Republic of Macedonia. Specifically, the effect of the photovoltaic power plants is examined. For this purpose we developed an electricity production optimization model, based on standard network flow model. The renewable energy sources are included in the model of Macedonia based on hourly meteorological data. Electricity producers that exist in 2012 are included in the base scenario. Two more characteristic years are analyzed, i.e. 2015 and 2020. The electricity producers planned to be constructed in these two years (which include the renewable energy sources) are also included. The results show that the renewable energy sources introduce imbalance in the system when the minimum electricity production is higher than the electricity required by the consumers. But, in these critical situations the production from photovoltaic energy sources is zero, which means that they produce electricity during the peak load, and do not produce when the consumption is at minimum.


2020 ◽  
Vol 133 ◽  
pp. 110139
Author(s):  
Majed AL-Rasheedi ◽  
Christian A. Gueymard ◽  
Mohammad Al-Khayat ◽  
Alaa Ismail ◽  
Jared A. Lee ◽  
...  

2019 ◽  
Vol 136 ◽  
pp. 02016
Author(s):  
Yudong Liu ◽  
Fangqin Li ◽  
Jianxing Ren ◽  
Guizhou Ren ◽  
Honghong Shen ◽  
...  

China is a big consumer of energy resources. With the gradual decrease of non-renewable resources such as oil and coal, it is very important to adopt renewable energy for economic development. As a kind of abundant renewable energy, solar power has been widely used. This paper introduces the development status of solar power generation technology, mainly introduces solar photovoltaic power generation technology, briefly describes the principle of solar photovoltaic power generation, and compares and analyzes four kinds of solar photovoltaic power generation technology, among which photovoltaic power generation technology is the most mature solar photovoltaic power utilization technology at present.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3599 ◽  
Author(s):  
Martinez-Fernandez ◽  
deLlano-Paz ◽  
Calvo-Silvosa ◽  
Soares

Carbon mitigation is a major aim of the power-generation regulation. Renewable energy sources for electricity are essential to design a future low-carbon mix. In this work, financial Modern Portfolio Theory (MPT) is implemented to optimize the power-generation technologies portfolio. We include technological and environmental restrictions in the model. The optimization is carried out in two stages. Firstly, we minimize the cost and risk of the generation portfolio, and afterwards, we minimize its emission factor and risk. By combining these two results, we are able to draw an area which can be considered analogous to the Capital Market Line (CML) used by the Capital Asset Pricing model (CAPM). This area delimits the set of long-term power-generation portfolios that can be selected to achieve a progressive decarbonisation of the mix. This work confirms the relevant role of small hydro, offshore wind, and large hydro as preferential technologies in efficient portfolios. It is necessary to include all available renewable technologies in order to reduce the cost and the risk of the portfolio, benefiting from the diversification effect. Additionally, carbon capture and storage technologies must be available and deployed if fossil fuel technologies remain in the portfolio in a low-carbon approach.


2014 ◽  
Vol 988 ◽  
pp. 702-705
Author(s):  
An Na Won ◽  
Won Hwa Hong

With heightening of awareness on global warming and rationalization of energy use, there is an increasing attention in the household sector about introduction of renewable energy. In terms of policy, distribution plans for 30,000 photovoltaic houses and one million green homes are underway, Studies on awareness of innovators are required to increase supply of renewable energy in the household sector. Accordingly in this study, a survey was conducted for the purpose of examining awareness and willingness to bear cost for introduction of renewable energy, focusing on photovoltaic power, wind power and fuel cells. The results are as follows.


2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Jane Oktavia Kamadinata ◽  
Tan Lit Ken ◽  
Tohru Suwa

Abstract Renewable energy is an attractive alternative source of energy to fossil fuels, as it can help prevent global warming and air pollution. Solar energy, one of the most promising renewable energy sources, can be converted into electricity using photovoltaic power generation systems. Anywhere on the Earth, solar irradiance generally fluctuates during the day but depends on atmospheric conditions. Thus, when a photovoltaic power generation system is connected to a conventional electricity network, predicting near-future global solar irradiance, especially its drastic increases and decreases, is critical to stabilize the network. In this research, a simple method utilizing artificial neural networks to predict large increases and decreases in global solar irradiance is developed. The red–blue ratio (RBR) values, which are extracted from a set of sampling points in images of the sky, as well as the corresponding global solar irradiance values, are used as the artificial neural network inputs. The direction of the movement of clouds is predicted using RBR data at the sampling points. Then, solar irradiance is predicted using the RBR values along the axis closest to the predicted cloud movement direction and the corresponding solar irradiance measurements. The proposed methodology is able to predict both large increases and decreases in solar irradiance greater than 50 through 100 W/m2 1 min in advance with a 40% prediction error. A significant reduction in computational effort is achieved compared to existing sky image-based methodologies using limited sky image data.


Sign in / Sign up

Export Citation Format

Share Document